Mesoscale Processes over the Shelf and Slope in SW06

Glen Gawarkiewicz
Andrey Shcherbina
Frank Bahr
Craig Marquette
Physical Oceanography Dept.
WHOI
Collaborators and Thanks

• Jim Lynch, Arthur Newhall WHOI
• Phil Abbot, Chris Emerson OASIS Inc.
• Scott Glenn, Donglai Gong Rutgers
• Many thanks to the people who organized the experiment and deployed all the moorings we slalomed around
Outline

• Overview of AWACS Program and coordinated sampling for SW06
• Alongshelf variability before TS Ernesto: Slope Water intrusions onto the shelf
• Acoustic implications: continuity of the Cold Pool duct
• Shelfbreak frontal structure due to warm core ring interactions
• Contrasting eddies: NEST May 2007
AWACS Program

Concept of **Autonomous Wide Aperture Cluster for Surveillance (AWACS)**

Build-test-build components and algorithms for an AWACS of quiet surrogate targets operating in littoral, for Spring and Fall Experiments 2007

Develop mobile acoustic sources
Explore capabilities of REMUS and Glider towed arrays
Develop algorithms for **adaptive sampling, search and data assimilation**
Explore the limits of **Detection Classification Localization (DCL) signal processing**
Explore and develop **command and control based on adaptive sampling**
Initial Plans-

Scanfish focuses on alongshelf sampling.
Gliders focus on cross-shelf sampling.

Preliminary Ocean Sampling Plans for AWACS/SW06
Glider, Scanfish Track and HU Low-Res Model
AWACS Objectives in SW06

- Night-time high-resolution Scanfish surveys to map front
- Use of Environmental keys (depth of mid-depth duct, foot of front, frontal position at 40 m depth) to determine mobile acoustic source track
- Determine impact of smaller-scale oceanographic features on TL
Primary Tools- Scanfish and OASIS Mobile Acoustic Source

Scanfish- Undulates 2-120 m
Ship Speed 6 knots
CTD, fluorescense, oxygen, light trans.

OASIS Mobile Acoustic Source
Operated at 150 dB
New Jersey Climatology

Salinity - MAB: NOAA, HB2 & SEEP

Foot of front at 80 m isobath in summer (34.0 Salinity)
SST: 8/25/06

Large Slope Eddy adjacent to Shelfbreak
Temperature and Salinity along 1000 m isobath

High salinities show that slope eddy is present over full 30 km of offshore transect.

Strong thermocline at 40 m depth with 14-18 Deg C water down to 120 m.
Water Mass Properties at 1000 m isobath and Velocities at 45 m depth

Blue and green points - T/S Points before Ernesto
T range - 13-26 Deg C
S range - 34.3-36.3

Slope eddy imposes onshore
Offshore flows at 1000 m isob.
Strengthens/Weakens SBF
August 25-Temperature at 40 m

Strongest cross-shelf Gradients between 80 and 100 m isobaths

High Values - 22 Deg C

Thermal boundary of front at 70 m isobath in Southwest portion of grid
High salinities over Upper slope- 35.6

Maximum gradients Between 80 and 100 m isobaths

Penetration of saline water reaches 80 m isobath in southwest portion of grid
Temperature and Salinity along 80 m isobath - August 25

Strong mid-depth temperature minimum (Cold Pool duct)
Much weaker thermocline in SW

Saline intrusion (> 35) along thermocline and along bottom
Recurrence of Saline Intrusions- August 28

Soundspeed along 80 m
High soundspeed= Saline Intrusion

Soundspeed at local minimum (K. Moore- URI)
OMAS Tracks- August 28 and 29

OMAS tracks along 80 m isobath running back and forth three times
TL vs. Range along 80 m isobath - August 28

Increased TL as OMAS crosses saline intrusion
Donglai Gong - Rutgers Four types of Saline intrusions
Shelfbreak Frontal Structure August 27

Temperature

Salinity

Density

Alongshelf Velocity

Jet Core

40 m depth
Saline Intrusions as an adjustment process

Salinity Field from Cross-shelf transect, August 29-30

Salinity field from Adjustment problem With observed T/S Profiles to initialize (“dam-break”)
New England Shelfbreak Test May 2007

Slope Eddy adjacent to shelfbreak front

Core of eddy located at depths of 50-300 m
Cold Pool duct extends in upper 70 m above core of eddy
Duct is more pronounced in eastern section
Conclusions

- Slope eddy had large impact on along-shelf variability at 80 m isobath
- Pycnocline salinity intrusions also had temperature and density signals
- Increased TL as propagation crosses saline intrusion
- Sub-surface jet and reversal of density gradients from 10-40 m depth may drive saline intrusions
Density Along 80 m isobath August 25
Along-shelf and Cross-shelf velocities at 80 m isobath August 25

Onshore velocity of 10 cm/s in SW- offshore velocity over most of the section

Alongshelf flow to SW peak of 30 cm/s consistent with onshore meandering of frontal jet
Alongslope and Cross-slope velocities at 1000 m isobath - August 25

Purple- to Northeast

NE alongslope flows of 20-30 cm/s

Contour interval 10 cm/s

Purple- Offshore

Onshore flow on SW side with maximum velocities of 30 cm/s