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Group speed-theory

Levenberg-Marquardt

non-linear least squares method

Inversion Scheme for Compressional Speeds

Broadband data

Group speed dispersion by

Time-frequency analysis

Parameters for GA search

EOF coefficients

Sediment compressional  speeds

Bathymetry

Source-receiver range

Objective Function for mth parameter 

set

E(m) = ||w (dobs – dpred)||2

w – diagonal weight matrix

dobs – observed data 

dpred – predictions of forward model

Genetic Algorithm Optimization

Potty, Miller, Lynch and Smith,``Tomographic 

mapping of sediments in shallow water,

" J. Acoust. Soc. Am.,108(3), 973-986, (2000).

A Posteriori analysis

mean, standard  deviation



Range: 40 km

Water depth  100 m

Charge Weight: 0.8 kg

Source depth: 18 m

Arrival spread 4 s and 10- 150 Hz. 

PRIMER (1996)

Range: 30km

Water depth  100 m

Charge Weight: 38 g;

Source depth: 50 m

Arrival spread 1 s and 10- 200 Hz. 

ASIAEX-ECS Shot 60 

Broadband Sources 



Cross section of CSS combustion Chamber

a. Unburnt gaseous fuel/oxygen mixture

b. Gases expand during combustion

c. Bubble assumes a toroidal shape upon 

full expansion

A typical CSS pressure signature 

(produced by the combusion of 5.0 l 

stoichiometric hydrogen and oxygen 

and the power spectrum

Combustive Sound Source (CSS)

SW 06 (2006)

From: Wilson, P. S, Ellzey, J. L., and Muir, T. G., “Experimental 

Investigation of the Combustive Sound Source,” IEEE J. Oceanic. 

Eng., 20(4), 1995.
a.

b.

c.



Combustive Sound Source (CSS) 
during SW-06

Range: 21.24 km

Water depth  90 m

Source depth: 26 m

Arrival spread 0.8 s and 10- 200 Hz. 

CSS- SW06

The chamber we used in SW06 was a 
cylinder with a hemispherical cap. The 
bubble motion is not the same for the 
cylinder and the cone, although the 
radiated acoustic pulse is similar.



•Over the years the source levels have become lower resulting in shorter  

ranges

•Less separation between mode arrivals and lower SNR

•CSS used in SW06 gave two to three modes; will provide properties of deeper 

sediments; lower depth resolution

•Need for high resolution time-frequency techniques 

•Hong et al. developed an adaptive time-frequency analysis method, whose 

time-frequency tiling depends on the dispersion characteristics of the wave 

signal to be analyzed

Jin-Chul Hong, Kyung Ho Sun, and Yoon Young Kim, “Dispersion-based short-time 

Fourier transform applied to dispersive wave analysis,” J. Acoust. Soc. Am. 117 (5), 

May 2005

Time- Frequency Analysis 

Techniques
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Short time Fourier Transform
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Dispersion based Short time 

Fourier transforms
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D-STFT is defined using a basis function that include a new parameter d 
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This implies that the time-frequency box in (u,) can be obtained by rotating or 

shearing the time frequency box of standard STFT using the parameter d (u, )

If d (u, ) is chosen based on the local wave dispersion, then the resulting time 

frequency tiling will correspond to the entire wave dispersion behavior.

Dispersion based Short time 

Fourier transforms
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A comparison of time-frequency tilings. 

a. Short-time Fourier transform

b. continuous wavelet transform

c. dispersion-based short-time Fourier transform.

Time and Frequency Resolution

Time-frequency tiling in D-STFT is performed by adaptively rotating each of the 

analysis atoms with respect to the dispersion relationship



Iterative Scheme for estimating

modal group speeds

The key step in the algorithm is 

to connect each of the rotation 

parameters d(u,) to the actual 

dispersion relationship





D-STFT- Iteration: 3

AHC-800 Core



SHRU 2; 21.24 km

Wavelet Scalogram
D-STFT

Comparison – D-STFT Vs Wavelet Scalogram

Modes 1, 2 and 3 D-STFT produces similar information

Mode 4 – possibly on a null

Mode 5 – D- STFT offers some promise as opposed to Scalogram



Empirical mode decomposition (EMD), is used to generate a set of 

intrinsic mode functions (IMF). EMD is a method of breaking down a 

signal without leaving the time domain.

The objective of the EMD is to empirically separate a signal into several 

subsignals of varying, and possibly overlapping, frequency content.

Each of the sub-signals is referred to as an intrinsic mode function 

because it is empirically derived from the data i.e., there are no user-

specified filters.

The EMD produces a bank of IMFs whose sum yields the original signal.

The first IMFs produced contain the highest frequency components of a 

signal while the latter contain the lowest frequency components.

Empirical  Mode Decomposition

N.E. Huang, Z. Shen, S.R. Long, M.L. Wu, H.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung and H.H. Liu, “The 

empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series 

analysis,” Proc. Roy. Soc. London A, Vol. 454, pp. 903–995, 1998.



EMD – Example

(Rilling et al.)

EMD of a 3-component signal. The analyzed signal is the sum of 2 sinusoidal 

FM components and 1 Gaussian wavepacket. The time frequency analysis of 

the total signal (top left) reveals 3 time-frequency signatures which overlap in 

both time and frequency. The time-frequency signatures of the first 3 IMF’s 

extracted by EMD evidence that these modes efficiently capture the 3-

component structure of the analyzed signal.
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Amplitude, phase and frequency can 

be time-sorted and displayed in a 

time-frequency fashion. 

Hilbert – Huang spectrum

Time – frequency structure not clear !!!!!



Intrinsic Mode Function 

(IMF) # 8

IMF # 8 – 40 to 60 Hz 

Mode 1 and 2 dominant (0.4 

and 0.6 sec respectively)

Mode 3 energy at 1.1 sec 

(~50 Hz) and 1.35 sec (~ 40 

Hz)

Arrivals before mode 1 (50 

Hz) 



Intrinsic Mode Function 

(IMF) # 7

IMF # 7 – 60 to 100 Hz 

Mode 1 and 2 dominant (0.2 

and 0.4 sec respectively)

Mode 3 energy at 0.6 sec 

(~80 Hz) and 0.8 sec (~ 65 

Hz)

Mode 4 energy at 1.05 sec 

(75 Hz)



Intrinsic Mode Function

- (IMF) # 6

IMF # 7 – 60 to 160 Hz 

Mode 1 and 2 dominant (0.2 

and 0.3 sec respectively)

Mode 3 energy smeared 

between 0.4 and 0.6 sec

Mode 4 energy at 0.9 sec 

(80 Hz)

Mode 5 energy at 1.4 sec 

(80 Hz)



Intrinsic Mode Function 

(IMF) # 9

IMF # 9 – 60 to 160 Hz 

Mode 1 energy(0.35 sec)

Mode 2 energy at 0.9 sec 

(40 Hz)

Mode 3 energy at 1.3 sec 

(40 Hz)



Summary and Future Work

• D-STFT was applied to CSS data to improve 
the performance of time-frequency data.

• Individual EMFs provide insights into the 
modal arrivals at specific frequency bands.

• EMFs can improve the D-STFT (or wavelet) 
dispersion information by identifying or 
confirming mode arrival information 
especially at low frequency region.  



Questions ??


