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Inference of physical processes and
parameter values on continental shelf

Volumetric
array

VLA

HLA

L-arrays

General Question/Issue Addressed:  Compared to VLAs and HLAs, what additional information
about the physical ocean environment can be inferred using 2-D and 3-D arrays?

Discussion today will focus on resolution of L-array relative to HA and VA



ARL
The University of Texas at Austin

Example: sound speed inversions?

If acoustic measurements can infer information about the
seabed sound speed structure (and dispersion), then long range
acoustic data can infer frequency dispersion of attenuation
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Claude Shannon

Shannon or Gibbs Entropy

Edwin Jaynes

δ S = 0 subject to stated
constraints 

Constraints

S = -∫ Ω dW ρ(W|D) ln [ρ(W|D)/ ρ(W)]

∫ Ω dW ρ(W|D) = 1 ∫ Ω dW C(W) ρ(W|D) = <C>

Maximum Entropy in a Nutshell

Canonical Distribution
ρ(W) exp(-C(W, D)/T) 

Z
ρ(W|D) =

Z = ∫ Ω dW ρ(W) exp(-C(W, D)/T) 

But, how do we define infer information??
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Methodology

• Compare resolution of value of seabed sound speed ratio R1 inferred
from simultaneous signal processing of both HA and VA to separate
processing of HA and VA of bottom mounted L-array recordings
during Shallow Water 2006 experiment

• σR1 inferred from a MaxEnt approach
– Coupling versus decoupling of first sediment layer with deeper

layers
 More layers than needed leads to better fits to data but greater

uncertainty; compliments Occam’s Razor
– Various values for <C> (how much importance do we attach to

global minimum solution?)
– If resolution with L-array is higher relative to HA only, what

portion of VA contributes the most?
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52-element L-array deployed during Shallow Water 2006 
on New Jersey continental shelf in ~ 70 m of water

Equally spaced phones on VLA

Centered tapered HLA

L-Array Geometry

Signal Processing

HLA - complex beam spectra
VLA - complex omni spectra
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L-array 1 L-array 2

Track of Ship

Experimental set up for portion of SW06 

Near L-array 2
top sediment vanishes
hard sediment becomes
surface layer

HA

VA
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VA offsetRange at t0

Bearing at t0

Speed

Course

Water depth

SL(f1), SL(f2), SL(f3), SL(f4)

52-element L-array
RV KNOOR

Representation, Assumptions, and
Unknowns = 15 

f1=59.8 Hz, f2=80.6 Hz, f3= 136 Hz, f4=150 Hz

Uniform motion ~ 4 km track

HA

ρ1 = 1.8 g/cc  α1 = 0.55 dB/m@ 1 kHz  ε = 1.8
Ratio (1)
Thickness (1)

Ratio (2)
Thickness (2) ρ2 = 1.8 g/cc  α2 = 0.15 dB/m@ 1 kHz ε = 1.0

Ratio (substrate) ρ2 = 1.9 g/cc  α2 = 0.10 dB/m@ 1 kHz ε = 1.0

Single Sound Speed Profile
from measurement (potential
large source of uncertainty) 

Upper and lower bounds
of ratio vary between silty sand 
and very course sand 
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coherent sum over pairs and sequencesincoherent sum

over center frequency

Substituting for         gives correlation form of cost function:S| |f| | 0 ! C  ! 1

Includes gain in the coherent sum over pairs and sequences to fit multipath arrivals

and source track dependence.

Includes amplitude information to fit TL shape.

C = 1 –

Signal Processing (cont)
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Density - g/cc α- dB/m @ 1 kHz

Atten (dB/m) = (f/1000)1.8

with f in Hz

Maximum likelihood seabed structure

Uncertainty arises from small fluctuations about
average seabed structure

1665 m/s  ,  R1 ~ 1.125
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Ratio(layer 1)

HA only 3 m sediment lower limit, n=1

SL(f1) SL(f2)

SL(f3) SL(f4)

2σR1 = 0.053
~ (1637-1715 m/s)

<C> = 1/2(Cmin + Cu)
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Ratio(layer 1)

VA only 3 m sediment lower limit, n=1

2σR1 = 0.054
~ (1637-1715 m/s)

Note that
<R1> and 2σR1
remain
approximately
unchanged
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Ratio(layer 1)

L-Array only 3 m sediment lower limit, n=1

2σR1 = 0.050
~ (1628-1702 m/s)
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Ratio(layer 1)

HA only 20 m sediment lower limit, n=1

2σR1 = 0.045
~ (1632-1698 m/s)
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Ratio(layer 1)

VA only 20 m sediment lower limit, n=1

2σR1 = 0.041
~ (1635-1695 m/s)
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Ratio(layer 1)

2σR1 = 0.039
~ (1636-1694 m/s)

L-Array only 20 m sediment lower limit, n=1



ARL
The University of Texas at Austin

Ratio(layer 1)

HA only 20 m sediment lower limit, n=.9

2σR1 = 0.034
~ (1640-1691 m/s)
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Ratio(layer 1)

VA only 20 m sediment lower limit, n=.9

2σR1 = 0.040
~ (1635-1695 m/s)
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Ratio(layer 1)

L-Array only 20 m sediment lower limit, n=.9

2σR1 = 0.028
~ (1644-1686 m/s)
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0.0280.0400.03420-m lower limit of
1st sediment layer
2 HL subapertures, n=0.9

0.0400.0570.0523-m lower limit of
1st sediment layer
2 HL subapertures, n=0.9

0.0400.0480.04820-m lower limit of
1st sediment layer
4 HL subapertures, n=1

0.0390.0480.04520-m lower limit of
1st sediment layer
2 HL subapertures, n=1

0.0500.0540.0533-m lower limit of
1st sediment layer
2 HL subapertures, n=1

HL+VL processingVL processing onlyHL processing onlySignal processing and
lower bound on sediment
thickness

Resolution of sound speed ratio 2 σ

Summary of ratio resolution with L-array
for Ship of Opportunity Data in SW06

In all cases resolution
increased using L-array
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Summary

• Current work
– Quantified increase in resolution of sound speed ratio

of seabed by doing simultaneous processing in vertical
and horizontal dimension

– Increase in resolution depends on assumptions
Representation of seabed
Proximity of importance sampling near global minimum; <C>

• Future and ongoing work
– Estimation of <C>
– New estimates of sound speed and attenuation

dispersion and uncertainty from SW06
– Apply to range-dependent cases
– Design of future arrays (3-D) and experiments
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Phones 1 and 10
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Phones 14 and H


