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Goal

Model mean TL at mid frequencies under
slowly time varying conditions due to the
internal tide.



QOutline

« Ocean data/modeling using multiple
mooring data for mid-frequency acoustic
modeling.

« Two acoustic data sets and corresponding
broadband PE simulation results:

1. fixed range (550 m) data
2. towed source data (max 8.1 km)
« Summary and implications.



Geometry for acoustic measurements and oceanographic
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Sound speed recorded from mooring 54 for 18-19 August
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Acoustic data I: 550 m fixed range intensity, receiver depth 25 m, 1.5
— 6 kHz
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Group 1: Bottom Bottom Surfac
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Signal receiving time (hr)
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Simulation strategy

« Goal: develop a range-independent
acoustic model to simulate observed
arrival structure.

« Approach: broadband Parabolic Equation
simulation.

- Example: Fourier synthesis of PE runs in
1.5 - 6 kHz with pulse length 400 ms using
a CTD profile from the KNORR.



Acoustic data versus broadband PE simulation
(CTD input, receiver depth 25 m, 1.5 - 6 kHz)
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Acoustic data versus broadband PE simulations
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Data/model comparison of acoustic intensity of the first arrival

group
Receiver depth 25 m, 1.5 - 6 kHz
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Geometry for acoustic measurements and oceanographic
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Acoustic data II: towed source data at receiver depth 25 m, 1.5 -
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Reduced transmission loss at receiver depth 25 m with 1 kHz
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Modeling strategy

roadband PE simulations

se Mooring 54 for SSPs.

reak 8.5 h data into 27 20-min windows.
verage SSP over the window.

esult: ranae-indenendent. slowlv varvinag



Progress of sound speed profiles using Mooring 54 over 8 h
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Data/model comparison of reduced transmission loss
receiver depth 25 m, 2.5 kHz + 1 kHz bandwidth
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Summary Acoustic Data and Modeling

Acoustical effects of the rising thermocline:

1. 550 m data: changing arrival pattern and 5 dB change in
acoustic intensity.

2. Towed source data: 2 dB change in acoustic intensity.

Broadband PE together with range-
independent / slow time-varying ocean model
captures gross characteristics of TL.

1. At 550 m, good model/data agreement for both intensity and
arrival pattern.

2. For towed source, overall good agreement.



Implications

Acoustical effects of the rising thermocline are

significant, observable, and predictable.

Nearby mooring data improve acoustic modeling.

The observed acoustic variations due to the internal

tide impacts geoacoustic inversion.



