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* Inhomogeneous Oceans: Measurements and
Inference

e Maximum entropy versus Bayesian
e Initial Computations

 Example maximum likelihood range-
dependent calculations

* Summary
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Measurements and Inferences

ARL Why 1s inversion by itself not sufficient?
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Scientific objective: Interpret acoustic propagation in
inhomogeneous ocean waveguides

— Mode coupling mechanisms on shelf
— Kramers Kronig relationships in seabed acoustics

A maximum likelihood or inversion solution for C_,. 18
useful but insufficient

Uncertainty in inferences is a natural consequence of
— Environmental variability

— Noise in data

— Source-receiver motion and source level variability
— Model errors

Thus the need for posterior probability p(WID) that given
data D the correct solution 1s W



AR Two methods of inferring p(WID)
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e Bayesian approach designed to solve this problem
— Requires likelihood function
e Alternative method is maximum entropy principle

— Requires constraints



A R L Maximum Entropy Approach to Uncertainty in
Ocean Acoustics
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A R L A Canonical Distribution Approach (1)
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aude Shannon
Edwin Jaynes

Shannon or Gibbs Entropy

0 S = 0 subject to stated
constraints

-—

1

S=- dW p(WID) 1 WID)/ p(W
f €2 Pl ) In p( ) p(W)] Analogy with statistical mechanics

Constraints for a closed system in thermodynamic

equilibrium with heat reservoir
f O dW p(WID) =1

f 0 dW C(W) p(WID) =<C> = %(Cﬁm + C)

Y . . . . .
Crnin is global minimum determined from simulated annealing

C | average value of cost function space = 1/N ) C(W.)



ARL A Canonical Distribution Approach (2)
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0 S = 0 subject to stated
constraints

P(W) exp(-C(W, D)/T)

P(WID) =

y4 : L
Canonical Distribution

7= | o daw p(W) exp(-C(W, D)/T)

Average <C> constraint determines T

f 0O dW C(W) p(WID) = <C>



A Rl Relationship to Bayes formula
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Thomas Bayes

P(WID) = p(W) p(DIW) / p(D)

p(D) =f Q AW p(W) p(DIW)

P(WID) = p(W) p(DIW) {f Q dW p(W) p(Dlw)}_l

P(DIW) = exp(-C/T)

Canonical distribution (not normalized) plays role of likelihood function



A R L Average, standard deviation, and
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X oe Jo AW X (W )exp[—C(M(W

D)/T]

Z

oo = Jp AWIX (W)= < X >Pexp~C(M(W). D/T)
X = !
P () = J2 W 0w — wi) (exp[-C(W')/T)
o Z
<A >= > X (Wi)exp[-C(Wi)/T)
Zi\ exp[—C(Wy)/T]
ZL exp[—C (W) /T]
P(w;) = Z] € jwi=w; exp[—C(W /T]

Sk exp[—C(Wy)/T

marginal distributions

- Continuous formulation

Monte-Carlo integration



A R L Pros and cons of Bayesian versus
canonical distribution approach
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e When prior information on noise and model errors is
available, Bayesian approach is well justified

e Maximum entropy method appears well suited for problems
with sparse data

— Does not require direct assumptions about model / data
€ITors Or noise

»Indirectly includes such information via constraints
from observed features of cost

— Prior information on p(W) 1s included naturally via
relative Shannon entropy

— Leads to most conservative distribution
— No restrictions on cost functions
» Posterior distribution depends on cost function

— Can include higher order moments of features, if available
,via constraints



Application to acoustic data
ARL taken on continental shelf
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* Shallow Water 2006 experiment

— Data set of interest because of large spatial and temporal
inhomogenities on continental shelf
» Seabed

» Water column
e Current Work

— Maximum entropy principle applied to data with small range
inhomogenities assuming range independence

— Cross-slope range-dependent data using knowledge gained from
MEP analysis, Goff geophysics characterization, and SSP
measurements

— Representation of range-dependent media - balance of
representation versus number of parameters

— Working to implement faster propagation model than PE



A R L I_ocation of sources and receivers
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A R L Chirp seismic reflection profiles
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A R L Marginal distributions from MEP for
short range data (1-4 km) taken on Array 2
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A R L Sound speed profile along Track 1
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Geophysical structure of propagation
A R L pny propag
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CSS event 26 model-data comparison for weakly range
A R L dependent track range 26.3 km, 35-325 Hz band
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A R L Sound speed profile along Track 3
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Geophysical structure of propagation
track 3 from chirp reflection sonar
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Pressure (arbitrary units)
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A R L Sound speed profile along Track 2
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Geophysical structure of propagation
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Pressure (arbitrary units)
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Pressure (arbitrary units)

Model Data Comparison of Received Time Series on Track 2 SSP hypothesis 2
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A R L Summary and Implications
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* Learning probability distribution from measured acoustic data, while not the physics
problem, is the technical problem

* Continued study of connections between Bayesian and Maximum Entropy Principle
approach

e Details of coherent time structure of received time series for cross-shelf propagation
sensitive to both the range dependence of the

— Geoacoustic profile
— SSP profile
* Resolving ambiguities
— Include range-dependence of SSP and geoacoustics in p(WID)
» Balance of information gain and loss from increased number of parameters

— Sampling of water column in long range LF shelf experiments needs to be not greater
than 5 km

 Implications for 50x20 km? future shelf experiment
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