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Outline

• Inhomogeneous Oceans: Measurements and
Inference

• Maximum entropy versus Bayesian
• Initial Computations
• Example maximum likelihood range-

dependent calculations
• Summary
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Example of acoustic measurements to infer
parameters for inhomogeneous seabed

Small impulsive sources

Towed sources

L-array
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Measurements and Inferences
Why is inversion by itself not sufficient?

• Scientific objective: Interpret acoustic propagation in
inhomogeneous ocean waveguides
– Mode coupling mechanisms on shelf
– Kramers Kronig relationships in seabed acoustics

• A maximum likelihood or inversion solution for Cmin is
useful but insufficient

• Uncertainty in inferences is a natural consequence of
– Environmental variability
– Noise in data
– Source-receiver motion and source level variability
– Model errors

• Thus the need for posterior probability ρ(W|D) that given
data D the correct solution is W
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Two methods of inferring ρ(W|D)

• Bayesian approach designed to solve this problem
– Requires likelihood function

• Alternative method is maximum entropy principle
– Requires constraints
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Maximum Entropy Approach to Uncertainty in
Ocean Acoustics
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A Canonical Distribution Approach (1)

is global minimum determined from simulated annealing

average value of cost function space  = 1/N ∑ C(Wi)

Analogy with statistical mechanics
for a closed system in thermodynamic
equilibrium with heat reservoir

Claude Shannon

Shannon or Gibbs Entropy Edwin Jaynes

δ S = 0 subject to stated
constraints 

Constraints
S = -∫ Ω dW ρ(W|D) ln [ρ(W|D)/ ρ(W)]

∫ Ω dW ρ(W|D) = 1

∫ Ω dW C(W) ρ(W|D) = <C>
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Average <C> constraint determines T

A Canonical Distribution Approach (2)

Canonical Distribution

δ S = 0 subject to stated
constraints 

ρ(W) exp(-C(W, D)/T) 

Z
ρ(W|D) =

Z = ∫ Ω dW ρ(W) exp(-C(W, D)/T) 

∫ Ω dW C(W) ρ(W|D) = <C>
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Relationship to Bayes formula

ρ(W|D) = ρ(W) ρ(D|W) / ρ(D)

ρ(D) = ∫ Ω dW ρ(W) ρ(D|W)

ρ(W|D) = ρ(W) ρ(D|W) {∫ Ω dW ρ(W) ρ(D|W)}-1

ρ(D|W)  =  exp(-C/T)

 Canonical distribution (not normalized) plays role of likelihood function
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Average, standard deviation, and
marginal distributions

Continuous formulation

Monte-Carlo integration
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Pros and cons of Bayesian versus
canonical distribution approach

• When prior information on noise and model errors is
available, Bayesian approach is well justified

• Maximum entropy method appears well suited for problems
with sparse data
 Does not require direct assumptions about model / data

errors or noise
Indirectly includes such information via constraints

from observed features of cost
 Prior information on ρ(W) is included naturally via

relative Shannon entropy
 Leads to most conservative distribution
 No restrictions on cost functions

Posterior distribution depends on cost function
 Can include higher order moments of features, if available

,via constraints
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Application to acoustic data
taken on continental shelf

• Shallow Water 2006 experiment
– Data set of interest because of large spatial and temporal

inhomogenities on continental shelf
 Seabed
 Water column

• Current Work
– Maximum entropy principle applied to data with small range

inhomogenities assuming range independence
– Cross-slope range-dependent data using knowledge gained from

MEP analysis, Goff geophysics characterization, and SSP
measurements

– Representation of range-dependent media - balance of
representation versus number of parameters

– Working to implement faster propagation model than PE
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Location of sources and receivers
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Chirp seismic reflection profiles

12 km

12 km

Track 1

Track 2

Strong variations
in SSP along track

Weak variations
in SSP along track
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Water depth - m Ratio(layer 1)

Measured

Thickness(layer1) - m

Marginal distributions from MEP for 
short range data (1-4 km) taken on Array 2

Course sand
agreement with coresMeasured

2x106 samples
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Geophysical structure of propagation
track 1 from chirp reflection sonar
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CSS event 26 model-data comparison for weakly range
dependent track range 26.3 km, 35-325 Hz band

Mode 2, 35-50 Hz
Requires structure below 
water-sediment interface

Information from short-range data with additional information provided by direct geophysical
and sound speed measurements is sufficient for acoustic prediction along ~ isobath
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Geophysical structure of propagation
track 3 from chirp reflection sonar

CSS 26 Array 3
Moderately range-dependent track
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Geophysical structure of propagation
track 2 from chirp reflection sonar
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Model Data Comparison of Received Time Series on Track 2 SSP hypothesis 2

Observed model-data
phase shift diminished
with hypothesis 2

Measured SSPs placed at source and
3 km from receiver. 
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Summary and Implications

• Learning probability distribution from measured acoustic data, while not the physics
problem, is the technical problem

• Continued study of connections between Bayesian and Maximum Entropy Principle
approach

• Details of coherent time structure of received time series for cross-shelf propagation
sensitive to both the range dependence of the
– Geoacoustic profile
– SSP profile

• Resolving ambiguities
– Include range-dependence of SSP and geoacoustics in ρ(W|D)

 Balance of information gain and loss from increased number of parameters
– Sampling of water column in long range LF shelf experiments needs to be not greater

than 5 km
• Implications for 50x20 km2 future shelf experiment
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