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Experiment
Part of Shallow Water 2006 (SWO06)
Measure environment and acoustic propagation together (2 ships + mooring)
Effect of Nonlinear internal waves (NLIW'’s)
Quantitative, deterministic computation of acoustic effects from NLIW’s

Mid-frequency broadband acoustics: 1.5 to 10 kHz [0.13 ms resolution]






Data Collected
Aug. 13, 2006
Environmental measurements:
Towed CTD chain ~ 50 CTD units, ~1 m vertical spacing
7 loops around acoustic path (1.5 loops with NLIW'’s)
2 s sampling @ 6 kis
ship’s GPS for positioning (R/V Endeavor)
Ship’s CTD profile ~ 1 hr before the NLIW’s arrived (R/V Knorr)

Acoustic measurements:
Broadband pulse every 13 s from R/V Knorr to MORAY receiver mooring
1 km acoustic path at 300° compass heading
80 m depth
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Distances from 73°W, 39°N
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Acoustic Data
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NLIW model

3. Find thermocline depth (c = 1510 m/s) for towed CTD every 2 s; low pass

5. Find front of both waves, back of first wave (2 m above deepest part)

7. Linearly interpolate in space & time from all 3 legs

9. Fillin linearly interpolated amplitude, back of wave 2 & bore (15 meters — 17 m)

11.Connect with a smooth curve

13. Fill in the other sound speeds using 15:30 SSP
Vertically Lagrangian mode 1



Speed
Bearing

Time at
73W, 39N

Speed along
acoustic path

Average

Measured internal wave parameters

Front of
first wave

0.587 m/s

324.3;

15:14:26

0.643 m/s

Back of
first wave

0.606 m/s

316.8;

15:19:57

0.632 m/s

0.644 m/s

Front of
second wave

0.564 m/s

331.4;

15:23:01

0.658 m/s



NLIW model

3. Find thermocline depth (c = 1510 m/s) for towed CTD every 2 s; low pass

5. Find front of both waves, back of first wave (2 m above deepest part)

7. Linearly interpolate in space & time from all 3 legs

9. Fillin linearly interpolated amplitude, back of wave 2 & bore (15 meters — 17 m)

11.Connect with a smooth curve

13. Fill in the other sound speeds using 15:30 SSP
Vertically Lagrangian mode 1
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NLIW model

3. Find thermocline depth (c = 1510 m/s) for towed CTD every 2 s; low pass

5. Find front of both waves, back of first wave (2 m above deepest part)

7. Linearly interpolate in space & time from all 3 legs

9. Fillin linearly interpolated amplitude, back of wave 2 & bore (15 meters — 17 m)

11.Connect with a smooth curve

13. Fill in the other sound speeds using 15:30 SSP
Vertically Lagrangian mode 1
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Comparison of two reference frames
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Range-independent PE calculation (15:30)
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Ray Trace with NLIW’s
TB, BT, TBT,SBS arrivals
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Modeling results
The ray trace captures the main features in the arrival time

~ 1 ms shortening of travel time when the ray turns in the thermocline and a wave
coincides with that turning point

Passing through the thermocline has much less effect
Can we understand the systematic 1 ms shortening?

1. Ray path different (2nd order perturbation)

2. Faster sound speed (1st order)
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Interpretation ?

Sound Speed Sound Speed Sound Speed
change change change
— —— —
No wave With wave No wave With wave No wave With wave
Unperturbed ray -0.460 ms 0.741 ms -0.861 ms
4 4 0
. . ) 95 N
Path distortion 0234 ms J‘,)) 0373 ms 0.538m 6 0185ms 0493 ms \ -0.024 ms
Q “X P
— —— —
SEAILIEE ) 1.066 ms .0.388 ms 0.392 ms
Upper TBT Ray Lower TBT Ray TB Ray

SBS ray: ~ 0 from path distortion, ~0.3 ms from ss change, events overlap



Conclusions

Towed chain measurements can be interpolated onto the acoustic path, but some
assumptions are needed.

Acoustic modeling (PE & ray trace) obtains correct travel time.

Rays turning in the thermocline with a wave present are 1 ms faster

Attempted interpretation is partially successful






