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MEASUREMENT APPROACH

Estimates of vertical spatial coherence made with FM and CW pulses
«frequencies 3-18 kHz
BW << 1/channel impulse time, multi-paths are not separated but combined

—

1 1 1 1 1 1
0] 0.0z 0.04 0.06 0.08 0.1 012 014 016 0.18 0.z
RANGE (km)

Each pulse separated by ~60 sec.

Considerable averaging necessary to reduce both bias and variance.
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MEASUREMENT APPROACH

Low values of coherence magnitude particularly susceptible to bias

Several experimental sets combined over periods of order 60 min.
is sufficient to reduce bias and variance to acceptable levels —
especially important for lower magnitudes of coherence < ~0.3

For N~100 or more estimates,
more tolerable bias and variance
for low coherence magnitudes

Computed from equations in
Carter et al. (1973)
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MODELING APPROACH
RAM Parabolic Equation (Collins) modified to account for rough
water-air impedance boundary (via approach of Thomson and Brooke, 2003)
Generate 1-D cuts through a 2-D sea surface:

Large surface wavelengths (A > 16 cm, |K| < 1) use directional information from
nearby wave buoy estimates (Low Pass Sea Surface)

Small surface wavelengths (|K| > 1) goes as 1/|K |2 equivalent to 1/|K|* in 2D
(High Pass Sea Surface)

Surface Realization = Low Pass + High Pass with wave number support up to K~ 30

Sound speed data taken when appropriate from with CTD casts made from
the R/V Knorr, or derived from he WHOI temperature mooring (“Shark”)




Average air-sea conditions for 0830-1500 UTC. Wind speed 6 m/s +/- 1 m/s
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WHOI Temperature-derived sound speed from 10-Aug 2006 00:50:30
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PE Field 10 kHz flat surface
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change c(z) with flat sea surface: poor agreement
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Normalized Vertical Separation (kd)



fixed c(z) with each new sea surface
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DATA

RPE

change c(z) with each new sea surface: better agreement

with data
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Vertical Spatial Coherence ()

Normalized Vertical Separation (kd)
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compare with P.W.Smith, 1976
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Notional Ideas on Vertical Coherence
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Summary

«Spatial coherence subject to significant bias, particularly at [I'| < ~ 0.2

«Rough surface PE simulations compare well with observations
(comparison only for ranges < 1 km )

«For short ranges (Range/Depth < 10) multipath || is highly oscillatory,
(ray view point)

« For long ranges (Range/Depth) > 10 multipath || becomes monotonic
«Spatial coherence increases with range due to mode stripping:
sshort range: sea surface plays a strong role (modeled in this work)

«longer range: ocean dynamical effects will dominate (not modeled in this work)

Increasing spatial coherence with range has important implications in terms of
modeling reverberation and signal processing gain




