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Unperturbed modes
rather than local modes

* The perturbed 0, P only depends on P near the interface.

This leads to a low-rank coupling matrix.

« Modes only needed to be calculated once.



Variational principle: S is an extremum
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What is the change AL from moving an interface
up by an amount A(x)?
P, 0 P, and d P/ p are continuous across the interface
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The subscript i means that the pressure & its derivatives are
evaluated on the interface



Surface of the Ocean

With the approximation that the density of air is zero
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Therefore P and 0, P vanish, so only the Ap
term survives
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Mode representation
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kj IS the horizontal wavenumber of the j'th mode



Reduction to one-way
equation
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(A similar equation holds for cross terms)

First term = O(h?); dropped O one way equation
Second term = O(h); dropped from AL but not L
Third term = O(1); retained in both



Equation for mode amplitudes
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Y Is rank 3 (rank 1 for surface)



Gibbs phenomenon at water surface

Actual wave
function

0
Re y(0)

Difference = si function

Correct the slope atz=0
accounting for this si function

Instead of using the slope of the
sum of modes at the surface, use
it at the depth where the si
function has zero slope.



Sine Surface Resonant Case

Wavenumber of the surface = difference of
mode 2 and mode 3 wavenumbers

f =100 Hz, depth =50 m

Initially, pure mode 2
Isovelocity profile

Mode Equation
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Realization of a random surface wave

fleld

Pierson-Moskowitz spectrum for 7.7 m/s wind speed

100 Hz, depth = 50 m. Initially mode 2, isovelocity profile
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Statistical Moments

Special case of well-known results

Van Kampen, N. Stochastic Processes in Physics
and Chemistry, 1992, Chapter XVI

Dozier, L. and F. Tappert, "Statistics of normal mode amplitudes
in a random ocean. II. Computations," JASA 64, 533-5477 (1978).

First Moment = Coherent Field

Second Moment = Intensity Transport



Matrix Formalism

0 A =iKA +ih(x)MA

A 1s a vector of mode amplitudes

K 1s a diagonal matrix of horizontal wavenumbers

h(x) 1s a stationary random process with correlation function
C(X) = <h(x) h(x +X)>

M i1s the coupling matrix

Define a new matrix of correlated shorter - range couplings

N= )(C\)C(X)exp(iKX)M exp(DKX)dXx

0
The integrand 1s low rank, but the integral 1s not



Moment equations

First moment equation (lowest order in h)
'HX/A> = iK<A> - MN<A>

Second moment (Transport) equation

Use outer product <A A+> Mode intensities are its

diagonal elements.

T, AA* =K AA" -MNAA" -i AA" K- AA" N'M’
+NAA®* M +M AA" N’

This form only works because there 1s a single random function 4.

[Morozov and Colosi, eq. 16]



Simplifications

Dozier & Tappert conjecture:

Off-diagonal components of <AA+> are small, and can
be neglected.

This conjecture is found to not be true.

Replacement conjecture:
<AA+*> = <A><A+> + diagonal
By assuming AA+ — <A><A*> is a Gaussian process, we

can calculate all moments, such as the mode scintillation
index



Results (Water Surface)

For all results that follow:

compared to Collins PE with surface effects added by Rosenberg
flat sea floor, absorbing bottom (0.5 dB/A)

isovelocity waveguide

the frequency is 3 kHz

Pierson-Moskowitz wind wave spectrum (15 knots)
the water depth is 50 m

source at 25 m

moment equation results use “replacement conjecture”
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Conclusions

Unperturbed modes work well for surface and (we expect) bottom
roughness, both deterministically and stochastically, when the mean
waveguide is range independent.

Mismatch of boundary conditions between unperturbed and actual
surfaces can be corrected for.

The intensity transport equation can be written with only NxN matrices,
avoiding further approximation.

The Dozier-Tappert conjecture doesn’t work for boundary scattering, but
assuming it for only the incoherent field works in the examples we tried.

Even the scintillation index can be calculated using this conjecture,
assuming Gaussian statistics for the incoherent field.



