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Experimental site: off the New Jersey
Continental Shelf, Water Depth 80 m

Shallow Water 06 (SW06) August 2006
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80m

Receiver moored here

August 10 2006 measurements:

R/V Knorr holds station at four
source locations each at range 200 m
from the receiver and separated in 
bearing angle by 90o

Time: 0830-1500 UTC
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Two, time resolved surface bounce paths studied
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R/V Knorr CTD cast 1107 UTC

Derived from WHOI Shark Temperature
mooring 15 min avg. 0830 UTC

Derived from WHOI Shark Temperature
mooring 15 min avg. 1330 UTC
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Average air-sea conditions for 0830-1500 UTC.  Wind speed 6 m/s +/- 1 m/s

APL-UW
wave buoy
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Absolute value of vertical coherence vs normalized separation (kd) at 16 kHz

(n=20)
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Absolute value of vertical coherence vs normalized separation (kd) at 16 kHz

(n=80)
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Buoy

Plant model
6 m/s, 20000 m fetch
(Plant 2002)

Combination used in 
bistatic scattering computation

Modeling of coherence will proceed with directional-averaged 
sea surface wavenumber spectrum F(K)



SOURCE

PDF for vertical arrival angle

sea surface bistatic cross section
via small slope approximation & wave number spectrum F(K)
(Dahl, 1999)
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mean vertical arrival angle
close to specular angle ~18o

Variance = 0.0078 rad2

iso-speed analysis
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define kd* as |Γ| at exp(-1/2) 

The PDF for vertical arrival angle is readily  converted to spatial coherence Γ(kd)

Alternatively, the van Cittert-Zernike Theorem can utilized to estimate  Γ(kd)
(Dahl  2002, 2004)

kd* for c(z) ~ 21

kd* for   c0 ~ 14

2/1−=Γ e
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Range of magnitude coherence
for modeled spectrum: 4 – 10 m/s
Refraction conditions of SW06

Range of magnitude coherence
for modeled spectrum:  4 – 10 m/s
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Vertical Angular Compression

A
kd θσ/1~

*

Large change in kd* predicted
by the angular compression factor 

Compression does not intensity

SW06 geometry:
TL increased by 1.5 dB (confirmed by
ray and PE analysis)
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Model comparison with data (14-16-18-20 kHz) plotted verus kd



Summary

•Spatial coherence in sea surface forward scattering with strong thermocline

•Vertical angular compression: dominate effect greater than that linked to sea surface 
roughness and slope

•Vertical angles compressed while TL increased over spherical spreading
(angle expansion in upward paths not balanced by downward paths)

•Mild refraction effects (influencing phase of Γ) observed in ASIAEX data (Dahl 2004)
SWO6: strong refraction effects influencing both magnitude and phase

•Predictive model based on Snell’s mapping of angular variances


