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• To process and analyze PSK m-sequence signals with different carrier frequencies transmitted a 
distance of 19.2 km and collected by an array during the Shallow Water 2006 experiment. 

• To show the feasibility of broadband mode decomposition as a preprocessing method to reduce the 
effective channel delay spread and concentrate received signal energy in a small number of 
independent channels. 

• To show that this method is reliable and stable and even during strong internal wave activity a low bit 
error rate can be achieved.

OBJECTIVE



Shallow Water Experiment (SW06)
• Location, bathymetry, source and receiver positions. 

New York City



Acoustical Array “Shark”.
• The array system included a 16 channel VLA and a 32 channel HLA. The system was deployed in 78 m of water, 

which allowed 14 of the 16 vertical array channels to span the water column from about 76 m to 12 m depth.



Low Frequency Sound Source

63  bit M-sequence 101.7 Hz; 
127bit M-sequence 203.4 Hz; 
511bit M-sequence 813.8 Hz. 
PSKM 180 deg, 4 carrier cycles 
per digit, 40 M-sequence periods



ACOUSTIC FIELD NORMAL MODE DECOMPOSITION
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Signals from hydrophone array.

• Direct projection 
• Moore-Penrose pseudo-inverse transformation 
• Total Least Squares (TLS)
• Minimum Variance Distortionless Response (MVDR)
• Maximum a Posteriori Probability (MAP)
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The pseudo-inverse was used to perform the modal filtering for each frequency of signal section spectrum. 
The resulting filtered signals were transformed to low frequencies. 
After inverse Fourier Transform the processed sections then were down-sampled and combined by overlap- 
add method.
Another approach based on the low-pass equivalent method (base-band mode filtering) was tested and gave 
the equivalent result with less computation expenses.
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MAXIMUM LIKELIHOOD DETECTOR WITH JOINT CHANNEL ESTIMATION 
AND DATA RECOVERY

Joint channel response estimation and data recovery (pre-survivor processing).

The simplified equations for the maximum-likelihood (ML) metrics        are

are minimum LMS estimations of channel impulse response of low frequency equivalent;           is the data sequence; 
is the input data; a = 0.1 is a step size of estimation algorithm. 
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Block-diagram for adaptive algorithm of metrics calculation.Trellis for a four-state shift-register process 
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The comparison analysis has shown the superior performance of the MLSD algorithm with a joint channel 
estimation and data recovery for each sequence of data symbols then the traditional DFE equalizer in a channel with 
severe frequency selective fading.



PULSE COMPRESSION OF ARRAY INPUT SIGNALS

T. F. Duda and J. M. Collis, Acoustic field coherence in four-dimensionally variable shallow water environments: 
estimation using co-located horizontal and vertical line arrays, Proc. 2nd Meeting Underwater Acoustic Measurement 
Conf., Heraklion, Greece (2007).
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SOUND VELOCITY IN WATER AND BOTTOM

Sound speed fluctuations
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PULSE COMPRESSION AFTER MODE FILTERING

Scattering function after mode filtering

Mode-time correlations
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Scattering Function, August 19
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MODE FILTERING

Acoustic modes for different frequencies

Signal complex envelops constellations at the output of mode filters

Mode Shapes, August 6, f=104 Hz Mode Shapes, August 6, f=308 Hz
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Amplitude Amplitude

August 6, 203 Hz  August 19, 203 Hz 



DATA RECOVERY

August19 2006

First       BER = 1.9e-01

Second    BER = 0

Third      BER = 4.9e-01

Decoder: 3 taps ML equalizer.

August 6 2006

First mode   BER= 1.5e-01

Second mode  BER = 0

Third mode BER  = 0.2.

In both cases the second mode filtering gave the best reception quality with no errors

0

0.2

0.4

1 2 3
0

0.1

0.2

0.3

0.4

0.5

1 2 3



The data processing shows that even in a very complicated environment with strong internal 
wave solitons the acoustical energy is concentrated in a small number of the first acoustical 
modes. A receiver can estimate mode-time intensity distribution and use a signal from a more 
intensive mode (or a few of them) for demodulation. A very high quality data transmission can 
be achieved for a range of approximately 20 km.
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