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Outline

• Methodology

– Horizontal wavenumber estimation

– Perturbative inversion

– Qualitative Regularization

• The Shallow Water 2006 Experiment

– Acoustic and oceanographic measurements

– Inversion results

– Three dimensional model for the environment

– Validation of results: comparison to core data and ability 

to predict the acoustic field



Horizontal Wavenumber Estimation
The Hankel Transform Pair using the far field 

approximation
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The Short-Time Fourier Transform (STFT)

Auto Regression (AR)
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Hankel Transform Estimate

Auto Regressive Spectrum



Horizontal Wavenumber Estimation

Auto regressive (AR) techniques were used to estimate wave numbers from pressure field 

data. Mode shapes aided in identifying modes.  Across shelf data for 125 Hz shown here.

Window length of the AR estimator is 2000m. k5 k4 k3 k2 k1k6k8 k7
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Perturbative Inversion

This equation can be written in the form of a Fredholm integral of the first kind:
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y = AxWhich can be written in matrix form as:

is a vector representing the data

is a matrix representing the forward model

is a vector representing the model parameterx
A

y

A relation between a perturbation to sound speed in sediment and a perturbation to 

horizontal wavenumbers is formulated from the depth separated normal mode equation:



where     is a discrete version of the differential operator 

Solve the ill-conditioned problem:               by choosing the smoothest 

solution.

Tikhonov Regularization
y = Ax
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favors the flattest solution; 

favors the smoothest solution.  

L-Curve Criterion: The Lagrange multiplier    is chosen such that it both the 

residual                 and the semi-norm           are minimized simultaneously.
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where the set             is on orthogonal basis for     . 

Qualitative Regularization

where      is created by the user.qL
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qL is given by:

Solve the ill-conditioned problem:                by choosing the solution that 

best fits some prior knowledge.

y = Ax

The Qualitative Regularization solution is given by:
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Comparison: Tikhonov and QR
More accurate estimation of the bottom parameters can be made by allowing the 

solution to be a layered medium instead of a smooth profile.



Ship Tracks
Ship tracks oriented along, across, and oblique to the shelf break on radials with respect 

to the Shark VLA.  All ship tracks are about 5km long.



The New Jersey Shelf
chirp seismic reflection data

Chirp data provided by John Goff



Layering Information from Chirp Data



Layering Information from Chirp Data



Water Column Sound Speed



Inversion Results: Oblique Shelf Track

Input data to the inversion scheme: wavenumber estimates from 125 and 175 

Hz data.  Over lapping regions are inconsistent due to noise on the 

wavenumber estimates.



Inversion Results: Across Shelf Track

Wavenumber estimates could not be obtained for ranges less than 1.5 km 

because ship speed could not be approximated as constant along a radial with 

respect to the VLA.



Inversion Results: Along Shelf Track

Longer apertures were required for wavenumber estimation to account for 

closely spaced wavenumbers and average over the effects of the range 

dependent water column sound speed profile.



Simple Model



Model Agreement: SW06 Cores

Upper Unit: 1639m/s, 1624m/s, 1657m/s

Lower Unit: 1554m/s, 1652m/s (single values)

Below R: 1850m/s (Upper range of very erratic measurements)



Evaluation of Results: TL Prediction 50 Hz



Evaluation of Results: TL Prediction 125 Hz



Evaluation of Results: Correlation

( )

ˆ ( )

P r

P r

minmin

1
( ) ( )

R

r

PQ P r Q r dr
R r

=
− ∫

*

1
2* *

( )

ˆ( ) ( )

ˆ ˆ( ) ( ) ( ) ( )

cor R

P r P r

P r P r P r P r

=

 
 

Calculated Field

Measured Field

50 75 125 175

Incoherent Correlation 

of the pressure fields 

averaged over all 

tracks

0.7 0.8 0.9
-80

-70

-60

-50

-40

-30

-20

-10
Along Shelf

Correlation

D
ep

th
 [m

]

0.7 0.8 0.9
-80

-70

-60

-50

-40

-30

-20

-10
Across Shelf

Correlation
0.7 0.8 0.9

-80

-70

-60

-50

-40

-30

-20

-10
Oblique Shelf

Correlation



Conclusions

• Inversion Results

– Range Dependent Inversion Results for three distinct 

tracks

– Creation of a 3-D model by determining for sound speed 

for each layer

• Validation of Results

– Comparison shows agreement between inversion result 

and core data

– Ability to predict the acoustic field at all depths and 

frequencies



Back Up Slides



Evaluation of Results: Correlation
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Monte Carlo Error Estimates

The complete solution of the inverse problem requires not only the estimates 

of the model parameter values, but also a measure of the uncertainty of the 

estimates. 

Monte Carlo Error Propagation:
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The empirical estimate of the covariance matrix
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Error bars: standard deviation of the model 

estimates



Inversion Results: Error Bars
For the Oblique Shelf Track



Calculated Error Bars

2

1

2
( )

M

ijj

ii

R
rl i

R
==

∑

T -1 -1 T
m v m vR = (G C G + C ) G C G

d + v = Gm

� T -1 -1 -1
m v mC = (G C G + C )

For the nonlinear problem examined here, the solution is arrived at iteratively.  

Assuming the final solution to the problem is linear, it is valid to use linear 

theory to obtain the resolution and covariance matrices.

Beginning with the linear problem:

The resolution matrix is given by:

The posterior model covariance

matrix is given by:

vC mCData covariance matrix; Model covariance matrix

Resolution length  is given by:



Calculated Error Bars
For the Oblique Shelf Track


