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Introduction

e (Geoacoustic inversions can suffer the effects of
uncertain water-column fluctuations.

e Inverting for the fluctuating water-column parameters
increases the dimensions of parameter space so that
the inversions may not be efficient, especially in the
Bayesian inverse approach.

e With data nullspace projection, acoustic data are
project onto a subspace that 1s insensitive to uncertain
water-column fluctuations, and so one can directly
invert for bottom properties from the projected data.



Random linear internal waves

e One of the sources causing water-column randomness 1s
linear internal waves. (Can do non-linear as well).

e Sound speed variations in a linear internal wave field can

be decomposed by a set of empirical orthogonal functions.
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Bayesian approach to geoacoustic inversion

e Inherited from Bayes’ theorem
P(d , Im)xP(m)
OP(d,,, lm)xP(m)dm

where d .. and m are acoustic data measurements and

Pmld, )=

environmental model parameters, respectively.

e The conditional probability function P(d_, Im) defines a

obs

likelihood function L(m) for the model parameters with
fixed acoustic data measurements.

Pmld , )P L(m)*xP(m)

posterior probability density of m prior information of m




Nullspace pre-processor

 Uncertain/random water-column fluctuations can cause errors in acoustic inversions, and the

data nullspace projection method has been developed to reduce the errors.

e This method is designed to expose desired information (bottom geoacoustic parameters or

acoustic source location) by projecting the acoustic signal in an uncertain water-column

channel onto its data nullspace.
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Range-Averaged Bottom Sound Speed Inversion using
Modal Group Velocity

In using the data nullspace projection method, we determine the acoustic data
nullspace of water column fluctuations from perturbation theory with sound
speed EOF statistics.
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Bayesian inversion with data nullspace projection

e With the projection method, the data observation and
replica are projected onto the data nullspace prior to
calculating likelihood function.

— Original form of Gaussian likelihood function

L(m) exp8 (G(m) d, ) C;'(Gm)- dobs)a

i expZ L Dd(m)" C:'Da(m)®
& 2 0

— After projection,

e 1 0
Lm) B exp = - & ~(N>Dd(m))" (N>C, xNT) [ N xDd (m)) :
where C, and N are data covariance matrix and data

nullspace matrix, respectively.



Geoacoustic inversion in the presence of internal waves
[1 Bayesian approach using modal phase speeds
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Geoacoustic inversion in the presence of internal waves
[1 Bayesian approach using modal phase speeds

 Two inversions are compared
— without data nullspace projection

e 2 bottom parameters and 3 water-column
soundspeed EOF coefficients

— with data nullspace projection

e 2 bottom parameters

e The Metropolis sampling algorithm 1s used to calculate the
posterior probability density of model parameters.



Geoacoustic inversion in the presence of internal waves
[1 Bayesian approach using modal phase speeds

e Inversions comparison

without data nullspace projectior
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Conclusion

* Determine the acoustic data nullspace of water-column fluctuations
from the EOF statistics, and expose the bottom information contained
in the acoustic signals propagating in the random ocean.

e The numerical simulation shows that the inversion with data nullspace
projection produces better solutions than the inversion without
projection, even when solving for both bottom and water-column
parameters.

Future Work

* Applying this projection method to the acoustic data collected in
the SW06 experiment for bottom inversion, e.g. range-dependent
modal wavenumbers (K. Becker, OSU, and G. Frisk, FAU).

* Applying this projection method to other inverse problems and
acoustic signal processing in the dynamic ocean.



Matched-Field Source Localization
Simulation Study

e In this simulation study, a random linear internal wave field 1s generated,
where the mean profiles follow the measurements in the SWO06.

e A 25-elements VLA is placed at 11.5km far from the source, which is at
depth 32m and transmits 225Hz monotone signal. The signal to noise ratio
1s set to be 20dB.

* In this test case, the data
IlllHSp ace iS directly Sound Speed Profiles in an Intemal Wave Field at 0.00 Hours
estimated from the data- L s o
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estimate. A perturbation o Trame e Lo e o 10,00 Hone
approach, incorporating BeL |
sound speed EOF’s, 1s a 5
work in progress.
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Matched-Field Source Localization

e To add complexity to the simulation, the synthetic received signals
on the VLA at three successive time steps are coherently averaged.
The mean soundspeed field is utilized to calculate the acoustic
signal replica.

e The Capon’s MVDR operator 1s applied. With the projection
method, the received signal and replica are projected onto the data
nullspace prior to implementing the MVDR operator.
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Questions??

“fH\S 1S Tile PART I
AVWAYS HATE."



