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Description of measurements and analysis

From limited acoustic measurements in ocean water
column
• Inverse problem solved for global minimum

environmental solution
Better resolution of attenuation is inferred

from long range propagation data
– Inference of Biot parameter bounds
– Scattering parameters inferred from

reverberation measurements
– Modeling of wind generated ambient

noise
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Inversion in a nutshell

Consider a space Γ with volume Ω that contains source-receiver
positions, kinematical parameters, and ocean waveguide parameters

W is a vector in Γ 

An objective of cost function defined

C(W) = C(D, M(W))  ~   1 - correlation (M·D)

D - Measured data vector
M - Modeled data vector

Inversion algorithm is used to explore C(W)

Simulated annealing is used to find the global minimum
Cmin = C(Wgm)
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Description of measurements and analysis

• Uncertainty of waveguide parameters leads to
uncertainty in propagation

• How does one quantify the uncertainty?
• Under what circumstances does uncertainty obtained

from models and inversion methods = true
environmental uncertainty?

• How does this uncertainty affect inferences of seabed
physics from basic measurements?

But

Therefore, one needs a mathematical framework
from which to compute probability distributions
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• Cost measures error relative to horizontal
stratification

• Uncertainties arise from small fluctuations relative
to horizontal stratification

• One does not know the distribution; thus derive
the most conservative distribution that only
predicts specific constraints
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Uncertainty from Maximum
Entropy Principle

Gibbs or Shannon
relative Entropy

is global minimum determined from simulated annealing

average value of cost function space  = 1/N ∑ C(Wi)

What is the probability distribution 
for a specific parameter in W or transmission loss?
Following Jaynes (Phys. Rev. 106  1957) 

Analogy with statistical mechanics
for a closed system in thermodynamic
equilibrium with heat reservoir
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Maximum entropy principle and
canonical ensemble

canonical ensemble

partition function

Average <C> constraint determines T

Entropy in terms of Z, T, and <C>
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Mean, standard deviations, and marginals

Reduced or marginal distribution
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A point in Γ
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• Sampling of Γ by random walks in limit that
N becomes large ~ Monte Carlo sampling

• Convergence criteria: Marginal distributions
remain unchanged when number of samples
increased

• ~ 2x106 samples appears sufficient for
problem considered
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Hybrid Cost Function, cont.
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over center frequency

Substituting for         gives correlation form of cost function:S| |f| | 0 ≤ C  ≤ 1

Includes gain in the coherent sum over pairs and sequences to fit multipath arrivals
and source track dependence.
Includes amplitude information to fit TL shape.

C = 1 –

Greater weight for higher RL data.
Increases number of unknowns.
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Application to New Jersey experiment

• Infer frequency dispersion of seabed
attenuation

• Test various theories of seabed physics that
predict attenuation

• Effects of seabed variability on propagation
• Sensitivity of ambient noise and

reverberation on seabed physics

Experimental goals
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August-September
2006  SW06

BTEC measurement
September 2003
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Array locations during SW06
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Sub-bottom layering along dip-line

Design of experiment was to place L-array on uniform
sand sheet

Chirp reflection image provided by John Goff
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Sub-bottom between two L-arrays

?

Image provided by John GoffChirp reflection image provided by John Goff
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Comparison of TL at global minimum
 of hybrid cost function; Array 2
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Methodology to extract frequency
dependence

• Use coherent Full Field Inversion (FFI) technique
on low-frequency tow data and impulsive sources
at two array locations to invert for
– Sound speed structure in sediment

• Include range-variability with PE RAM to extract
attenuation

• Extend to higher frequencies at Array 1 location

Horizontal variability is small enough on range scales of 20 km to
extract attenuation structure over large bandwidth
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Inferred attenuation and comparison to Biot
model

Biot parameters bounds determined
from basic measurements by Goff
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Comparison to Zhou study
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Example of use of global minimum solution: Modeling
measured reverberation time series with Lamberts law

Nautreverb
µ=-37.0 dB
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Example of use of global minimum solution: Extracted µ
values assuming Lamberts law
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Measured wind noise during TS Ernesto
a b
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Wind noise relative to deep water location
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CSS time series comparison
Range = 4.7 km
SD=26.2 m
RD=69.5 m
BW=10-3000 Hz
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Cost envelopes for CSS
 inversions near Array 1

1st layer
2nd layer

2nd layer

Thin hard sand
over thicker 
softer layer
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Marginal probability distributions of position
and kinematical parameters at Array 2

Range @ t0 - m Bearing @ t0 - deg Source depth - m

Speed - m/s Course - deg

Mean = 1029 m
σ = 141 m

Mean = 85.6 deg
σ = 1.77 deg

Mean = 29.8 m
σ = 1.05 m

Mean = 2.54 m/s
σ = 0.21 m/s Mean = 98.1 deg

σ = 3.74 deg
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Marginal probability distributions of selected
environmental parameters

~1715 m/s

Water depth - m Ratio(layer 1)

~1630 m/s
± 26 m/s

Measured

Thickness(layer1) - m

Density (layer 1) - g/cc Ratio(layer 2) Thickness(layer2) - m

No information on 
this parameter

Mean = 70 m
σ = 0.57 m

Mean = 1.09
σ = 0.0178

Mean = 13.9 m
σ= 8.5 m, long
tail influence

Mean = 1.83 g/cc
σ = 0.1 g/cc
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Global minimum solution and <TL>± σ
solutions compared to measured TL
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Measurement of variability
along propagation track: Single J-15-1 tow
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Computed TL s from maximum entropy
principle versus range
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Long range TL uncertainty
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• Current inferences of attenuation based on
global minimum solutions

• Maximum entropy principle applied to quantify
statistics of environmental parameters and
propagation
 Computed and measured TL uncertainty consistent

• Environmental parameter marginals
– Sensitive to signal processing
– Dependent on volume and sensitivity

• Uncertainty of Biot parameters is ongoing
research


