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Introduction @

On August 18, mid-frequency acoustic transmission data were collected on
a vertical array over a continuous 7-hour period at range 550 m.

The combination of acoustic frequency (1 to 10 kHz) and range (550 m)
were expected to be useful for studying the effects of both /inear and
non-linear internal waves



Motivation @

Linear internal waves often are modeled as a background random process
introducing random fluctuations in the acoustic field.
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Acoustic fluctuations may be examined
using WPRM theory:

- At 1 kHz and range 550 m, should be
In weak-scattering Rytov regime.

+ At 10 kHz and range 550m, should be
In strong-scattering regime.



Motivation
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Non-linear internal waves are often modeled as a more event-like process
causing strong, localized changes in the acoustic sound speed.

Example: Isotachs observed during 1996 Coastal Mixing and Optics Experiment (from Rouseff, 2001).
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550 m acoustic path might permit individual waves in the packet to be isolated.



Data Modeling and Analysis @

Present analysis considers ~0.5 hours of data collected immediately
before, during, and after the passage of a non-linear internal wave.




Pre Non-Linear Internal Wave

Measured sound speed profiles

showed anomalous bump at ~30 m 20

that hadn’t been observed earlier in
experiment. Layer of warm, salty,

ap

neutrally buoyant water present. 13:45 UTC
i 14:38 UTC
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60 |
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Based on measurements, decision made to put source at depth 40 m.
(Source depth was 30 m on data collected earlier in experiment.)



Pre Non-Linear Internal Wave @

'"BELLHOP- 18 Aug 14:358 UTC

Modeling Result: Eigenrays to
receiver at depth 50 m for assumed
range-independent environment.

Indistinct direct path sensitive to
details of sound speed profile.

Strong, distinct bottom-bounce path.
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Internal Wave “Sonny” @

Non-linear internal wave named
“Sonny” as observed by radar
aboard the R/V Knorr.

R/V Oceanus collected oceanographic
data on Sonny in close proximity to
acoustic source deployed off stern of
R/V Knorr.




Experiment Geometry

Positioning of Assets:
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Internal Wave “Sonny”
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Positioning of Assets:
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Using the measured bearing and speed (0.89 m/s) of Sonny observed

at R/V Oceanus, we can estimate when wave will pass acoustic assets.
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Positioning of Assets:
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Experiment Geometry @

Positioning of Assets:
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Using the measured bearing and speed (0.89 m/s) of Sonny observed
at R/V Oceanus, we can estimate when wave will pass acoustic assets.



Experiment Geometry @

Positioning of Assets:
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Using the measured bearing and speed (0.89 m/s) of Sonny observed
at R/V Oceanus, we can estimate when wave will pass acoustic assets.



Results

Acoustic arrival pattern evolving over
32 minutes at depth 50 m.

Bulk shift in arrivals due to source
and/or receiver motion.

Bottom (B), Surface-Bottom (SB)
and Bottom-Surface (BS) paths
noted as is position of internal wave.

Main Result: New acoustic path
“splits” from bottom bounce as
internal wave passes above acoustic
source.
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Results @
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New acoustic arrival induced by passing internal wave arrives at steeper
angle than original bottom-bounce path.
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Hypothesis: Upward launched ray refracted downward by passing
internal wave. Ray strikes bottom further downrange than original
bottom-bounce path and so arrives at receiving array at steeper angle.



Modeling @

Preisig and Duda (1997) developed
a 3-layer model for the sound speed:

Range-dependent sound speed

Cyp = 1530 m/s

* Upper layer ¢, lower layer ¢,
middle layer with constant gradient.

- Soliton model for IW displacement:

— 2 —
n(x,t)=asech”((x Cpt)/L) Ciow = 1495 m/s

500 0 200




Modeling @

Preisig and Duda (1997) developed

Range-dependent sound speed
a 3-layer model for the sound speed:

Cyp = 1530 m/s

* Upper layer ¢, lower layer ¢,
middle layer with constant gradient.

« Soliton model for IW displacement:
2
n(x,t)=asech”((x—c,t)/L) S
Apply model in ray trace study to test
hypothesis using appropriate
parameter values:

Cyp = 1530 m/s, ¢, = 1495 m/s, 500 0 500
z,,=18 m, z,,,, = 30 m,
a=8m,L=100 m, Cp=0.89 m/s.




Modeling
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Modeling
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Modeling

Xx=310m
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Modeling
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Summary @

Mid-frequency acoustic transmission data were collected on a vertical array over a
continuous 7-hour period at range 550 m.

Present analysis considers data collected immediately before, during, and after the
passage of a non-linear internal wave.

Results show a new acoustic path being generated as the internal wave passes
above the acoustic source.

Simple model produces results consistent with observed new ray path.

Future work includes: acoustic data analysis of complete 7-hour period; range-
dependent acoustic modeling that is better integrated with the collected
oceanographic data; data/model comparison; data/scattering-theory comparison.



