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Outline

• SW-06 Experiment – 
– Combustive Sound Source (CSS) deployment
– Background geoacoustic data 

• CSS data analysis using Dispersion Based 
STFT (D-STFT)

• Inversion and results
– Compressional wave speeds
– Compressional wave attenuation

Potty, Miller, Wilson, Lynch and Newhall, “Geoacoustic inversion using combustive 
sound sources,” JASA-EL (SW06 Special Issue-accepted)
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SW 06 – Experimental Area
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SW06 Acoustics Moorings

       WHOI moored sources/receivers

       Sources:  MSM, nrl300, nrl500, WHOI224, WHOI400

       Receivers:   5 SHRUs,  Shark

*

WHOI 224, 400

SHRU5–SW49

SHRU3–SW53

SHRU1–SW51

SHRU2–SW52

SHRU4–SW50

Shark 
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MSM 
nrl300 
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acdc vla

CSS # 20

Seismic sections
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Cross shelf variation of sound 
speed in the New Jersey shelf 
measured using a scanfish. 

Color scale represents sound 
speed in m/s.

Ocean Sound Speed

SHRU being deployed
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CSS # 20
 390 5.5174’
-730 5.5816

SHRU # 2
 380 57.6715’
-720 54.8139’

Deployed at
107 m

Bathymetry, Source and Receiver locations

Bathymetry from
John Goff
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Range   Depth  Length
section   (m)      (km)

4        100-95    1.44
5        95-90      1.04
6        90-85      3.68
7        85-80     11.27
8        80-75     1.18
9        75-70     2.63

In situ probes

Short core- station 77

AHC – 800 Core

Geo-acoustic data

Grab samples
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Geoacoustic Model : Jiang et al. 

Y-M Jiang, N. R. Chapman and M. Badiey, “Quantifying 
the uncertainty of geoacoustic parameter estimates for 
the New Jersey shelf by inverting air gun data,” J. 
Acoust. Soc. Am. 121(4), (2007)

http://www.uri.edu/


NE Dip Line – Preliminary Interpretation

75 m

Seafloor

Gravel Mound (grab samples)

(grab samples) 75 m
Seafloor

NW SE
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 From John Goff
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Cross section of CSS combustion Chamber
b. Unburnt gaseous fuel/oxygen mixture
c. Gases expand during combustion
d. Bubble assumes a toroidal shape upon 
     full expansion

A typical CSS pressure signature (produced by 
the combusion of 5.0 l stoichiometric hydrogen 
and oxygen and the power spectrum

Combustive Sound Source (CSS)

From: Wilson, P. S, Ellzey, J. L., and Muir, T. G., “Experimental 
Investigation of the Combustive Sound Source,” IEEE J. Oceanic. 
Eng., 20(4), 1995.

a.

b.

c.

The chamber used in SW06 was a cylinder with a 
hemispherical cap.  The bubble motion is not the 
same for the cylinder and the cone, although the 
radiated acoustic pulse is similar.

http://www.uri.edu/
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• ARL group (Preston 
Wilson and David 
Knobles) deployed 31 
CSS shots from R/V 
Knorr 

• Depth of CSS ~26 m
• There was a monitoring 

hydrophone
• Difficult to deploy 

especially in rough seas

Combustive Sound Source (CSS) during SW-06

CSS was used as a boot-strap measure to field an impulsive sound source during SW-
06.  At the time, CSS had been inactive for a decade, and had never been developed 
beyond the proof-of-concept stage.  The device deployed during SW06 was designed for 
a laboratory engineering study and was not designed to be used at sea.  ARL will be 
working on a more field-able version of CSS.

http://www.uri.edu/


SHRU 1; Rec # 28

SHRU-1 (Single Hydrophone Receive Unit) 
– deployed at 85 m; sampled @ 9765 Hz

CSS –Event 2 at Range - 15.2747 km

First two modes strong; higher modes 
comparatively weak

CSS Signal on a 
WHOI SHRU

http://www.uri.edu/


Range: 40 km
Water depth ≅ 100 m
Charge Weight: 0.8 kg
Source depth: 18 m

Arrival spread 4 s and 10- 150 Hz. 

PRIMER

Range: 30km
Water depth ≅ 100 m
Charge Weight: 38 g;
Source depth: 50 m

Arrival spread 1 s and 10- 200 Hz. 

ECS Shot 60 

Explosive Sources and CSS

Range: 21.24 km
Water depth ≅ 90 m
Source depth: 26 m

Arrival spread 1 s and 10- 200 Hz. 

CSS- SW06

•CSS is not intended to be a 
direct replacement for 
explosives

•It is intended to offer a 
sharp impulse, and have 
good low-frequency energy, 
but still more 
environmentally friendly.

http://www.uri.edu/


The short-time Fourier transform (STFT) and the continuous
wavelet transform (CWT) are commonly used for the time - frequency
analysis of dispersive waves.

The time-frequency resolution achieved by the STFT is independent of the 
location in the time-frequency plane; CWT allows frequency-adaptive time-
frequency tiling

Time-frequency tilings of STFT and CWT do not consider the dispersion effect 
explicitly.

Hong et al. developed an adaptive time-frequency analysis method, whose 
time-frequency tiling depends on the dispersion characteristics of the wave 
signal to be analyzed

Jin-Chul Hong, Kyung Ho Sun, and Yoon Young Kim, “Dispersion-based short-time 
Fourier transform applied to dispersive wave analysis,” J. Acoust. Soc. Am. 117 (5), 
May 2005

Time- Frequency Analysis Techniques

http://www.uri.edu/
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The time-frequency box in (u,ξ) can be 
obtained by rotating or shearing the time
frequency box of standard STFT using 
the parameter d (u, ξ)

If d (u, ξ) is chosen based on the local 
wave dispersion, then the resulting time-
frequency tiling will correspond to the 
entire wave dispersion behavior.

Dispersion based Short time Fourier transforms

http://www.uri.edu/


A comparison of time-frequency tilings. 
b. Short-time Fourier transform
c. continuous wavelet transform
d. dispersion-based short-time Fourier transform.

Time and Frequency Resolution

http://www.uri.edu/


Time – Frequency 
Diagrams

Modes 1, 2 and 3 are strong in the 
CSS signal 

Modes 4, 5 and 6 partially present

Wavelet scalogram – poor time 
resolution at low frequencies 

DSTFT performs well at the upper 
frequency band (compares well with 
wavelets)

At low frequencies DSTFT produces 
better time resolution.

http://www.uri.edu/


Iterative Scheme for estimating modal group speeds

http://www.uri.edu/


Inversion Results
Compressional wave speed 
(top 40 m) compared with 
Jiang et al. model (JASA-
2007)

Standard deviation ~ 20 
m/sec.

The R- reflector is approx. 
around 20 m 

Sea floor

R - Reflector

http://www.uri.edu/


Inversion Results

Sediments in top 15 m 
generally sandy 
interbedded with mud and 
shells.

Inversion captures the 
trend in core data; but 
lower in magnitude 

Magnitude higher than 
Jiang et al. model.

http://www.uri.edu/


Relative Sensitivity of modes

Mode #

0-2 m

2-4 m

4-6 m

6-10 m

10-14 m

14-18 m
18-22 m

22-26 m

26-30 m

>30 m
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Attenuation Inversion

ρ     density
r     source-receiver range
zr1 , zr2      receiver depths
z     receiver depth
κ               horizontal propagation constant

∫
∞

=
0

2)()()( dzzzkz mmm ψαβκ

β modal attenuation coefficient
ψ mode shape for mode m
α(z) attenuation profile
k(z) ω / c(z)
ω angular frequency

(1)

(2)

CSS # 20

SHRU #2

SHRU # 1
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k and n unknown 

parameters

C(z) from CTD and Sediment
inversions

β – for different modes

Modal amplitude ratios
(same mode and receiver depth,

Different range)

Minimize the 
difference

between data 
and prediction

Mode amplitude ratios from 
Time-frequency diagrams

Best estimate
k and n

Inversion Algorithm

http://www.uri.edu/


Modal Amplitude Ratios

Mode 1 and 2 ratios in the frequency range 20 
Hz to 80 Hz used for inversion

Inversion for attenuation in the sediment layer 
(0 to 18 m) and basement 
 

http://www.uri.edu/


Attenuation Inversion Results

Published data – all types of sediments (Stoll- 85)

Primer study

Primer data

(Biot Model)

(Biot model)

ECS data

SW 06 Freq. exponent ~ 1.83

Inversions compare well with earlier 
(Primer) inversions

Frequency exponent agrees with 
Holmes et al. (JASA-EL;2007) value of 
1.8 +/- 0.2

http://www.uri.edu/


Summary and Future Work

• CSS provides a sharp impulse, and 
good low-frequency energy, and are 
environmentally friendly.

• D-STFT was applied to CSS data to 
improve the performance of time-
frequency data.

• Initial inversions promising. Data from 
other CSSs and receivers could also be 
used.  

http://www.uri.edu/


Future Work

• Extensive inversions for attenuation
• Looking at the spatial variation using 

multiple sources and receivers

http://www.uri.edu/


         Questions ??
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SHRU 2; 21.24 km

Wavelet Scalogram
D-STFT

Comparison – D-STFT Vs Wavelet Scalogram

Modes 1, 2 and 3 D-STFT produces similar information
Mode 4 – possibly on a null
Mode 5 – D- STFT offers some promise as opposed to Scalogram

http://www.uri.edu/


Extra Slides – Locations of CSS events and SHRUs
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AHC-800 Core
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Short core at station 77

From Chris Sommerfield
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In situ probe data
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Inversion : YT
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Dip Line – Preliminary Interpretation

75 m

Seafloor

Toward the southern end of the survey area, 
the outer shelf becomes increasingly less 
acoustically penetrative – probably indicative of 
higher sand/gravel content at the surface. 

From: John Goff

http://www.uri.edu/

