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Character of the shoreward traveling internal tide. Time series at

Central site
- Order 40-km wavelength

- Continually feeds energy into synchronized packets of short

nonlinear internal waves
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This talk: What is the net effect of ducting and refraction (NE sources) and Jg&
mode coupling (NW sources)







1. Temporal fluctuations at periods of
minutes to hours
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Gradually descending
spectrum. Rises again at f >1 cph.

Note band containing
most of the variance: 15 hours
to 1 hr period (0.06 to 1 cph)

Gappy-date spectral methods
tested and verified.




2. Horizontal variability of the acoustic field can be evaluated using

3. Array gain (or gain degradation compared with theoretical limit)

4. Coherence function R(x) = 0®%(x,) ®(x,+x) U, @ = @ (t)= A(t) exp(iB(t))
5. Length scale where R falls to benchmark value (i.e. exp(-1) )

6. Characteristic length scale of coherence function

Published results obtained by analyzing a subset of the NE data
Two behaviors observed: (JASA EL Sept 2008)

4. Without large internal waves: Fixed-mode (idealized field) and
actual-field R have similar shape; coherence lengths reach their
greatest values, ~240 m (16A) ; Mode interference restricts
coherence.

5. With large internal waves: Fixed-mode and actual-field R differ;
Resulting coherence lengths are short: Fixed-mode: 140 m (9.3A),
Actual: 80 m (5.3\). Strong azimuthal variability in the
propagation restricts coherence.



Procedure to separate azimuthal field variability: Compare actual and
synthesized “Fixed-Mode” horizontal field variability.
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Coherence functions R(x)

Ensemble members (i.e. R curve for each pulse)
and mean R functions, actual and fixed-mode synth.

(1) small IW (2) large IW
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Table with correlation lengths available in the JASA-EL paper. 49



Array gain analysis:

Signal to noise improvement (gain, G,) as a function of the number of
equally spaced elements (M) is plotted, dB format.

G.\M)=(S, /Ny )/\8,/N,)
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correlation parameters p, where R(]s) 0 exp( (]s/HA) ), p=1
and where HA is correlation length. 11

* Note that using array shape increases gain...



L, =80m

L, sin(25 deg) = 33 m

Large-IW Case .. having differing
actual and fixed-mode coherence
lengths ...

The value from actual data is
shorter, meaning that mode
interference caused by off-
broadside incidence is not the
explanation for finite R.

Azimuthally-varying * mode
amplitudes and phases must be
present, giving finite transverse
coherence scale

(* azimuth re source)
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Large-IW Case .. having differing
actual and fixed-mode coherence
lengths ...

The value from actual data is
shorter, meaning that mode
interference caused by off-
broadside incidence is not the
explanation for finite R.

Azimuthally-varying * mode
amplitudes and phases must be
present, giving finite transverse
coherence scale

Coherence scale decreases as

broadside is approached
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Mode-Interference
Controlled Case
(small internal
waves)

Fixed-mode and
actual HLA data yield
same coherence
scale.
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Mode-Interference
Controlled Case

Long coherence length
at broadside

Probable reduction of
coherence length at A
other incidence
angles, the opposite
of the azimuthally-
dependent
propagation case
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Small internal waves

Minor mode (and/or field)
variation with azimuth,
azimuthal effects are

only important at broadside.

Large internal waves

Strong azimuthal propag.
limitation : Lh-prop is very
short

Obvserved array Coh. scale
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[ dashed line: Incidence
angle-dependent mode-interference effect |

Angle from broadside

90
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3. Coherence Lengths, Steered-beam analysis
100 Hz, 19.2 km NE path (along wave crests)
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Multiple steering angle analysis. 200 Hz, NE 19.2 km path.

As waves pass, signal direction wobbles and coherence length decreases.
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=100 Hz - 200 Hz
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Cross-shelf NW path: Coupled-
mode propagation situation.

Short and variable coherence length

estimates. Cause (?): Short-scale
variations of the internal-wave
crests, micro-bathymetry, short-
scale static finestructure or

slope water intrusions, ...




Summary

Along-shelf (along wave crest) propagation

Correlation and array-gain analyses quantify differences in
signal character with/without nonlinear internal waves

Down-range mode interference and azimuthal variations of
field can be separated. A simple description of correlation
length vs. steering angle is possible.

Coherence length reductions coupled (more or less) with wave
passage and quantified for our array geometry. (Ducting and
refraction of modes)

Across-Shelf propagation

Temporal variations occur at periods of many hours, internal-
tide linked. There is a slightly sloped spectrum, 2

Temporal variations at periods less than one hour consistent
with coupling variations caused by internal wave motion.

Horizontal coherence scales are shorter than anticipated.
Strong refraction is unlikely, implicating effect of small-scale

medium
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Abstract:

Rapid coastal environmental evolution leads to highly variable acoustic fields. To quantify such
variability, one component of the Shallow-Water 2006 (SW06) program on the shelf east of New
Jersey was time series measurement of sound transmitted from fixed sources to joined horizontal
and vertical line arrays. Transmission paths were both cross-shelf and along-shelf (across and
along dominant internal-wave crests). Data were collected for over one month. Intensity time
series of 100—400-Hz pulses was found to have strong variability at periods from hours to over a
day, consistent with long-wavelength internal-tide effects. Such effects can arise from adiabatic
mode and/r coupled mode propagation. Separation of fluctuations into slow and rapid
contributions allows calculation of a time-varying horizontal coherence-length statistic. For along-
wave crest transmission, this was highly variable, typified by values ranging from a few acoustic
wavelengths to over 40 wavelengths, typically 10-25. The slow coherence-length fluctuations
had signatures of periodic (tidal) mode-refraction episodes (with short scale) during active
intervals, caused by internal-wave ducting. Conditions were more steady at other times. Across-
crest transmissions showed shorter than expected scale lengths of tens of wavelengths with
more subtle tidal dependence. [Work supported by the Office of Naval Research.]
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