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Wenz ‘62 
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Wenz Long Term Observations- Historical Interest 
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The Beaufort Scale- Wind Speed and Appearance 
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The Air Sea Interaction Zone 

A Mass-Momentum-Heat Transfer  

Sea Surface Spectrum, Reynolds and Richardson Numbers 
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The Marine boundary layer for turbulent flow over a rough sea surface 
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0      with efficiency ηrad =(ka)
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Turbulence Distortion 
and Rotation 

Quadrupole 

Fluctuating Forces Dipole 

Monopole Volume or Mass 
Fluctuation 

Fundamental Noise Sources 



10 

Pressure Release 

+ 

- 

Compact Radiators = Monopole+ dipole + quadrupole+……. 

Pressure Release Surface 

Monopole                Dipole 

Dipole                      Quadrupole ( not observed at distance) 

Quadrupoles            Octopoles ( not observed at distance) 

Major Sources are Monopoles ( Bubble, Bubble Clouds) below 
the Pressure release surface or Dipoles sources in the 
surface( impacts from splash, spray, rain drops). 

Turbulence-quadrupole source 

Pseudo sound 

Re Radiation 
Fluctuating forces 
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The pressure release surface with
 the monopole and it’s image. 
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• The pressure at r due to the source and image 
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The sequence of events of a liquid drop impinging on a water surface is shown by a series 
of photographs every 13 ms. Also shown is the corresponding oscilloscope trace of the 
impact, frames 1-2, The dampened sinusoid due to the bubble, frames 13-14, and the 
subsurface bubble frames 14-18. The radius of the droplet was 0.24 cm, the mass 56 g, 
and the droplet speed 350cm/s. 

Transient Bubble 
Oscillation-Monopole 

Drop Impact-Dipole 
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Wenz ‘62 
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Impact and Entrained Bubble Oscillation Noise 

Light Rain on a Pond or Lake 
Entrained Bubble Oscillation 

Rain Noise with Impact and 
Entrained Bubble Oscillation 
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Wenz ‘62 

Frequency Ranges 
0.2-2.0 Hz infrasonic, ULF 
2.0-20 Hz  infrasonic, VLF 
20-200 Hz  sonic, LF 
200-2 kHz  sonic, MF 
2-20 kHz    sonic, HF 
20-200 kHz ultrasonic, VHF 
0.2-2 MHz  ultrasonic, UHF 

Kibblewhite (1984 
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A Summary of Infrasonic measurements and theoretical estimates 
(adapted from Kibblewhite (1984)). 
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Wenz ‘62 
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A comparison of Noise Spectrum Levels in the frequency range 
from 1 Hz to 400 Hz in several ocean basins. 

Noise from ships dominates at the lower frequencies! 
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Frequency dependent WS characteristic is shown for several frequencies.  
The horizontal lines, no WS dependence, at lower frequencies and low WS show  
the limiting effect of noise from distant shipping. (Piggott (1964)) 



20 

The Noise Spectrum Level with and without shipping noise 



Ambient Noise:  

 Wind 

 Shipping 

 Whales ! 
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The Noise Spectrum Level from 1 Hz to 500 Hz for a near bottom 
hydrophone showing the increase in noise level with wave breaking. 

The Whittenborn Result, 1976 

increase in 
noise level 
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Relative noise intensity 
versus relative frequency for 
the  results of  Perrone 
(1969) [Kerman (1984)] for  a 
variety of wind speeds. 

Note Similar Processes 

Note Low Frequency 
Variability 
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The change in intensity level as a function of normalized friction 
velocity. Prior to the critical friction velocity there is one wind 
dependence and for friction velocities greater than critical another. The 
critical friction velocity is determinative of wave breaking. 
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Three-dimensional crescent 
shaped breakers that 
resemble deep water 
oceanic breakers are 
viewed in 2 second intervals 
from under the breaking 
wave. The vertical strings 
are spaced at 30.5 cm 
intervals and have 
15.3white and black 
sections. The wave 
steepness, the initial 
amplitude ao times the 
initial  wave number ko is 
0.33.  

Breaking waves produce 
microbubble clouds 
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Thorp, Nature 1980, Phil. Trans. R.S. 1982 

Thorp clearly showed the presence of “bubble Clouds” . But, what
 were the volume fractions and size distributions near the surface? 
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THE FUNDAMENTAL QUESTION AND HYPOTHESIS 

•  Question:  
             Since micro bubble plumes, clouds and

 layers are produced when waves break and are
 convected to depth; 

                What role, if any, is played by these micro
 bubble distributions in the production, scattering ,
 and absorption of sound near the sea surface at
 the low,20Hz, to mid, 2kHz, frequencies? 

•  Hypothesis:  
           If micro bubble plumes with volume fractions

 of 10-4 to 10-2 act as collective resonant oscillators,
 then sound can be produced and scattering can
 occur with little Doppler shift but ample Doppler
 spread. 
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Estimated noise spectrum level vs elevation angle as estimated by 
Kennedy (1990) for before wave breaking and after wave breaking. 
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Spectrum level of ambient noise vs wind speed class in the North 
Sea as measured by Wille (1984).  These spectra show the general 
wind speed dependency of ambient noise. 
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Wind speed dependency (n(f)) vs wind speed for frequency 
<20 kHz.  Three regions are identified; a noise limited region, 
a transition region, and a high wind speed region. 
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Table III: The White Cap Index 

 I. W(u) = 0,                                      u <4.5 m/s 

II. W(u) = (4.6x10-3)U3- (4.9x10-2)U2 + (4.63x10-1)U -1.5,       4.5 < U < 15 m/s 

III
. 

W(u) = (20.97)(U/15)1.5,                                       15 m/s < U . 

The wind stress coefficient ,the estimated friction velocity, u*, wind 
speed,  and white cap index. 
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The vertical arrival structure observed on an array in the sound channel as a function 
of vertical angle and frequency. 

Noise level vs. vertical angle (0 deg. is up, 
 low sea state) taken from above at specific 
 frequencies. This figure compares the broad 
 maximum along the horizontal at 49.5, 61.88, 
and 149.88 Hz with the peaked distributions at 
 240 and 339 Hz.  
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Relative noise levels versus angle (+90 is up) for 50 and 400 Hz. for the 
geometry and noise source distribution shown above.  
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Horizontal Noise Directionality 

The North Atlantic 

The Gulf of Mexico The Northeast Pacific Ocean  
( solid curve) compared 
to calculations basedon  
range dependent bathymetry, 
 range dependent sound  
velocity profiles and measured  
density of ships. [Wagstaff (2005)] 
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BEAM NOISE CHARACTERIZATION:’80-’82 

Smith-Reese-Carey-Stuart- 
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 Beam Noise Intensity Levels versus time and steering angle for a 
frequency of 320Hz, 0.18Hz band, 8 sec. interval for 110 λ array. 

Ships: Dark Tracks 

Environmental Noise 

The Dynamic Nature of Shipping Noise 
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Array site at 54o N and 145o W in the Gulf of Alaska  

The plane wave noise response versus bearing  
and elevation angle for the uniform distribution of  
sources. The azimuthal dependence of the vertical  
directivity is obtained on a sector-by-sector basis.  
The down slope conversion of the noise from 
 the sources over the slopes, to the north, fills  
in the notch at the horizontal. The directivity of the  
noise arriving from the open ocean, to the south, 
ispeaked at  
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 Wind noise source levels from  
satellite measurements  

The plane wave noise response  
versus bearing and elevation  
angle for the measured distribution 
 of wind noise sources. The peak  
response is at a bearing of 270o.  
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 Shipping noise source levels  

The plane wave noise response  
Versus bearing and elevation  
angle for distant shipping.  

Shipping source intensity level curves 

? 
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The Philippine Sea 

Philippine Sea Shipping Noise (22oN, 135oE) 

30o and 10o Critical Angle Bottoms 
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Archival Shipping Density 

Source Levels at 50 Hz 
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Quick Sat 10m Wind Speed Derived Source Levels 
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 30o  

Shipping -Uniform Source Distributions 

 30o  
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 30o  

Shipping Source Distribution 

10o 
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Ross’s Result 





Hellespont Alhambra (now TI Asia), a 
ULCC TI class supertanker, the largest 
ships in the world 

Configuration of ABB 
LNGC Electrical Propulsion. 



Dry Cargo 

    * Small Handy size, carriers of 20,000 long tons deadweight (DWT)-28,000  
 DWT 

    * Handy size, carriers of 28,000-40,000 DWT 
          o Seawaymax, the largest size that can traverse the St Lawrence 

 Seaway 
    * Handymax, carriers of 40,000-50,000 DWT 

    * Panamax, the largest size that can traverse the Panama Canal (generally: 
 vessels with a width smaller than 32.2 m) 

    * Capesize, vessels larger than Panamax and Post-Panamax, and must 
 traverse the Cape of Good Hope and Cape Horn to travel between 
 oceans 
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 Wet Cargo 

•  Aframax, oil tankers between 75,000 and 115,000 
 DWT. This is the largest size defined by the 
 average freight rate assessment (AFRA) scheme. 

•  Suezmax, the largest size that can traverse the Suez  
   Canal 

•  VLCC (Very Large Crude Carrier), supertankers 
 between 150,000 and 320,000 DWT.   

Malaccamax, the largest size that can traverse the 
 Strait of Malacca 

•  ULCC (Ultra Large Crude Carrier), enormous   
 supertankers between 320,000 and 550,000 DWT 
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Wind noise source intensity level curves versus frequency and wind speed,  
due to [Kewley et al., 1990]. The wind speeds in m/s are equivalent to 5, 10, 20, 
 30 and 40 knots, respectively. The source levels are in units of  

per square meter of surface area. The source depth is assumed to be one quarter of 
a wave length. 
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ANDES shipping source intensity level curves versus frequency and ship type, 
due to [Renner, 1986]. The source levels are in units of  

               The source depth is assumed to be 6 m. 

? 
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Wind speed dependency factor n(f) vs frequency for wind speeds >13 knots.   
Shown are the results of Crouch and Burt (1972), Piggott (1964), and Marrett and  
Chapman (1990) and an average of all data. 
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Critical Angle Bottom Loss 

 30o CA  

10oCA 

 2.0 gm/cm3  

 1.4 gm/cm3  
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Rain Drop Entrainment 
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A regular distribution of sources,  
based on the zeros for the Legendre 
 polynomials, is used to interpolate  
the field, due to an irregular set of positions 

Application of Reciprocity in the vertical plane 

Array Projection onto Vertical Plan 

Source level per unit area representation 

Sources 


