

1

Ambient Noise

William M. Carey

Boston University

May 11 2011

IEEE Jour. Oceanic Engineering 30(2) April 2005.

Special Issue Archival Papers						
Guest Editorial	245					
ARCHIVAL PAPERS						
Some Notable Noises: Monsters and Machines	248					
Ship Sources of Ambient Noise	257					
Measurements of Ambient Noise Spectra in the South Norwegian Sea	262					
High-Frequency Ambient Noise and Its Impact on Underwater Tracking Ranges	267					
Depth Dependence of Ambient Noise	275					
Measured Vertical Noise Directionality at Five Sites in the Western North Atlantic E. P. Garabed and R. A. Finkelman	282					
An Ambient Noise Model for the Northeast Pacific Ocean BasinR. A. Wagstaff	286					
Ambient Noise Measurements in the Northwest Indian Ocean	295					
Beam Noise Characteristics	303					
Low-Frequency Bottom Loss W. H. Geddes	312					
Fluctuations I: Spatial and Temporal Scales of Importance for Low-Frequency Propagation						
M. Kronengold and J. G. Clark	317					
Fluctuations II: Spatial and Temporal Scales of Importance for Low-Frequency Propagation						
J. G. Clark and M. Kronengold	322					

Ambient Noise Reviews and Proceedings.

- Buckingham, M. J. and J. R. Potter, Eds. (1995). <u>Sea Surface Sound '94</u>. Singapore, World Scientific Pub. Co.Pte.Ltd.
- Carey, W. M. (2005). "Special Issue on Archival Papers." IEEE J. Ocean.Eng. 30(2).
- Carey, W. M. (2010). "Oceanic Noise: mechanisms, radiation characteristics, and array results, Invited Paper 159th Mtg. Acoust. Soc. Am." <u>POMA, J. Acoust. Soc. Am.</u>
- Carey, W. M. and E. C. Monahan (1990). "Special Issue on Sea Surface Generated Noise: 20-2000 Hz." IEEE J. Ocean. Eng. **15(4)**.
- Farwell, R. (1985). "Special Session Air-sea Interaction and Noise, 110 Mtg. of the Acoustical Society of America." <u>J. Acoust. Soc. Am.</u> **78(S1)**.
- Frisk, G., D. Bradley, et al. (2003). Ocean Noise and Marine Mammals. Washington, D.C., Ocean Studies Board, National Research Council, National Academy Press
- Hersey, J. B., Ed. (1974). International Workshop on Low Frequency Propagation and Noise, Vol. I, Vol. 2. . Arlington, VA, The Maury Center of Ocean Sciences, Office of Naval Research.
- Hills, D. (1968). Sound in the Sea. Rochester, Capital Records for Marine Resources Inc., Electro Marine Sciences Div. Northridge,CA.
- Kerman, B. R., Ed. (1988). <u>Sea Surface Sound: Natural Mechanisms of Surface Generated Noise in the</u> Ocean 15-19 June 1987. Dordrercht, Netherlands, Kluwer Academic Publishers.
- Kerman, B. R., Ed. (1993). <u>Sea Surface Sound: Natural Mechanisms of Underwater Sound, Sea Surface</u> <u>Sound (2), Cambridge, U.K., July 1990.</u> Dordrercht, Netherlands, Kluwer Academic Publishers.
- Leighton, T. G., Ed. (1997). <u>Natural Physical Processes Associated with Sea Surface Sound</u>. Southampton S017 1BJ, UK, Univ. of Southampton, Highfield.
- Medwin, H. (1989). "Special Session, Sea Surface Sound, 117 Mtg. of the Acoustical Society of America." <u>J. Acoust. Soc. Am.</u> **75(S1)**.
- Richardson, W. J., C. R. Greene, et al. (1995). Marine Mammals and Noise. San Diego, CA.
- Tavolga, W. N., Ed. (1964). Marine Bio-Acoustics. New York, NY, Pergamon Press.
- Tavolga, W. N. (1965). Review of Marine Bio-Acoustics, State of the Art:1964,Tech. Rpt.: NAVTRADEVCEN 1212-1. Port Washington, NY, Naval Train Device Center.
- Urick, R. J. (1984). Ambient Noise in the Sea, Undersea Warfare Technology Office, NAVSEA, D.O.N., Washington, D.C.20362. (Also available from Peninsula Publishing, Los Altos, CA, 1986.).
- Wenz, G. M. (1972). "Review of Underwater Acoustics Resarch: Noise." <u>J. Acoust. Soc. Am.</u> 51(2 pt 3): 1010-1024.

Wenz Long Term Observations- Historical Interest

The Beaufort Scale- Wind Speed and Appearance

Beau- fort numb e r		Wind Speed				U.S.	Hydrographic Office		International		Estimating wind speed	
	knots	mph	meters per second	km per hour	Nautical term	Weather Bureau term	Term and height of waves, in feet	Code	Term and height of waves, in feet	Code	Effects observed at sea	Effects observed on land
0	under 1	under 1	0.0-0.2	under 1	Calm		Calm, 0	0			Sea like mirror.	Calm; smoke rises vertically.
1	1-3	1-3	0.3-1.5	1-5	Light air	Light	Smooth, less than 1	1	Calm, glassy, 0	0	Ripples with appearance of scales; no foam crests.	Smoke drift indicates wind direc- tion; vanes do not move.
2	4-6	4-7	1.6-3.3	6-11	Light breeze		Slight, 1-3	2	Rippled, 0-1	1	Small wavelets; crests of glassy appearance, not breaking.	Wind felt on face; leaves rustle; vanes begin to move.
3	7-10	8-12	3.4-5.4	12–19	Gentle breeze	Gentle	Moderate, 3-5	3	Smooth, 1-2	2	Large wavelets; crests begin to break; scattered whitecaps.	Leaves, small twigs in constant motion; light flags extended.
4	11-16	13-18	5.5-7.9	20–28	Moderate breeze	Moderate		4	Slight, 2-4	3	Small waves, becoming longer; numerous whitecaps.	Dust, leaves, and loose paper raised up; small branches move
5	17–21	19-24	8.0-10.7	29–38	Fresh breeze	Fresh	Rough, 5-8		Moderate, 4-8	4	Moderate waves, taking longer form; many whitecaps; some spray.	Small trees in leaf begin to sway.
6	22-27	25-31	10.8-13.8	39-49	Strong breeze				Rough, 8-13	5	Larger waves forming; whitecaps everywhere; more spray.	Larger branches of trees in mo- tion; whistling heard in wires.
7	28-33	32-38	13.9–17.1	5061	Moderate gale	Strong	ong				Sea heaps up; white foam from breaking waves begins to be blown in streaks.	Whole trees in motion; resistance felt in walking against wind.
8	34-40	39-46	17.2-20.7	62-74	Fresh gale	Very rough, 8-12 Gale		5 Very 13	Very rough, 13–20	6	Moderately high waves of greater length; edges of crests begin to break into spindrift; foam is blown in well-marked streaks.	Twigs and small branches broken off trees; progress generally im- peded.
9	41-47	47-54	20.8-24.4	75-88	Strong gale		High, 12–20				High waves; sea begins to roll; dense streaks of foam; spray may reduce visibility.	Slight structural damage occurs; slate blown from roofs.
10	4855	55-63	24.5-28.4	89-102	Whole gale	Whole	Very high, 20–40	7	High, 20-30	7	Very high waves with overhang- ing crests; sea takes white ap- pearance as foam is blown in very dense streaks; rolling is heavy and visibility reduced.	Seldom experienced on land; trees broken or uprooted; con- siderable structural damage occurs.
11	56-63	64-72	28.5-32.6	103-117	Storm	gale	Mountainous, 40 and high er	8	Very high, 3045	8	Exceptionally high waves; sea covered with white foam patches; visibility still more re- duced.	
12 13 14 15 16 17	64-71 72-80 81-89 90-99 100-108 109-118	73-82 83-92 93-103 104-114 115-125 126-136	32.7-36.9 37.0-41.4 41.5-46.1 46.2-50.9 51.0-56.0 56.1-61.2	118-133 134-149 150-166 167-183 184-201 202-220	Hurri- cane	Hurri- cane	Confused	9	Phenomenal, over 45	9	Air filled with foam; sea com- pletely white with driving spray; visibility greatly reduced.	Very rarely experienced on land; usually accompanied by wide- spread damage.

Table I : The Beaufort Scale

* Adapted from N. Bowditch (1958 edition), American Practical Navigator, U.S. Navy Hydrographic † Since January 1, 1955, weather-map symbols have been based upon wind speed in knots, at Office Publication No. 9, p. 1059.

The Air Sea Interaction Zone

A Mass-Momentum-Heat Transfer

Sea Surface Spectrum, Reynolds and Richardson Numbers

The Marine boundary layer for turbulent flow over a rough sea surface

$$C_{u}[z/h_{s}, R_{i}, R_{es}] = [ln(z/z_{o})/\kappa]^{-2}$$

$$C_{\Theta} = C_{u}[z/h_{s}, R_{i}, R_{es}]/[1 + C_{u}^{1/2}\delta\widetilde{\Theta}]$$

$$C_{me} = C_{u}[z/h_{s}, R_{i}, R_{es}]/[1 + C_{u}^{1/2}\delta\widetilde{m}_{e}]$$

$$C_{u} \cong C_{\Theta} \cong C_{me} \qquad z_{o} \le z \le |L|.$$

Fundamental Noise Sources

Order o Monopole $\partial^{\circ}g/\partial x_{oi}^{0}$ with efficiency $\eta_{rad} = (ka)$

Order 1 Dipole $\partial g / \partial x_{oi}$ with efficiency $\eta_{rad} = (ka)^3$

Order 2 Quadrupole $\partial^2 g / \partial x_{oi} \partial x_{oj}$ with efficiency $\eta_{rad} = (ka)^5$

The pressure release surface with the monopole and it's image.

• The pressure at r due to the source and image

$$\sin(\theta) = z_r / r_o ; r_o \cong r \cong r_i$$

$$P(r_o)/P_o = exp(i\vec{k}\cdot\vec{r}_s)/r_s + \mu exp(i\vec{k}\cdot\vec{r}_i)/r_s$$

~

$$\rightarrow \mu = -1; z_s / \lambda < 1/4 \rightarrow |P(r_o)/P|^2$$

 $= 4 \left(2\pi z_{\rm s}/\lambda \right)^2 \sin(\theta)^2$

The sequence of events of a liquid drop impinging on a water surface is shown by a series of photographs every 13 ms. Also shown is the corresponding oscilloscope trace of the impact, frames 1-2, The dampened sinusoid due to the bubble, frames 13-14, and the subsurface bubble frames 14-18. The radius of the droplet was 0.24 cm, the mass 56 g, and the droplet speed 350cm/s.

Wenz '62

Impact and Entrained Bubble Oscillation Noise

A Summary of Infrasonic measurements and theoretical estimates (adapted from Kibblewhite (1984)).

A comparison of Noise Spectrum Levels in the frequency range from 1 Hz to 400 Hz in several ocean basins.

Noise from ships dominates at the lower frequencies!

Frequency dependent WS characteristic is shown for several frequencies. The horizontal lines, no WS dependence, at lower frequencies and low WS show the limiting effect of noise from distant shipping. (Piggott (1964))

The Noise Spectrum Level with and without shipping noise

The Noise Spectrum Level from 1 Hz to 500 Hz for a near bottom hydrophone showing the increase in noise level with wave breaking.

The change in intensity level as a function of normalized friction velocity. Prior to the critical friction velocity there is one wind dependence and for friction velocities greater than critical another. The critical friction velocity is determinative of wave breaking.

Breaking waves produce microbubble clouds

Three-dimensional crescent shaped breakers that resemble deep water oceanic breakers are viewed in 2 second intervals from under the breaking wave. The vertical strings are spaced at 30.5 cm intervals and have 15.3white and black sections. The wave steepness, the initial amplitude ao times the initial wave number ko is 0.33.

Thorp, Nature 1980, Phil. Trans. R.S. 1982

Thorp clearly showed the presence of "bubble Clouds". But, what were the volume fractions and size distributions near the surface?

THE FUNDAMENTAL QUESTION AND HYPOTHESIS

Question:

Since micro bubble plumes, clouds and layers are produced when waves break and are convected to depth;

What role, if any, is played by these micro bubble distributions in the production, scattering, and absorption of sound near the sea surface at the low, 20Hz, to mid, 2kHz, frequencies?

Hypothesis: •

> *If micro bubble plumes with volume fractions* of 10⁻⁴ to 10⁻² act as collective resonant oscillators, then sound can be produced and scattering can occur with little Doppler shift but ample Doppler spread. 27

$N(\theta) = dI/d\Omega = DPWg(\theta')\exp(-2\alpha r)/\cos\theta'(1-\beta\gamma\exp(-4\alpha r)),$

Estimated noise spectrum level vs elevation angle as estimated by Kennedy (1990) for before wave breaking and after wave breaking.

Spectrum level of ambient noise vs wind speed class in the North Sea as measured by Wille (1984). These spectra show the general wind speed dependency of ambient noise.

Wind speed dependency (n(f)) vs wind speed for frequency <20 kHz. Three regions are identified; a noise limited region, a transition region, and a high wind speed region.

The wind stress coefficient ,the estimated friction velocity, u_{*}, wind speed, and white cap index.

Table III: The White Cap Index

I.	W(u)=0,	u <4.5 m/s
п.	W(u) = $(4.6x10^{-3})U^3 - (4.9x10^{-2})U^2 + (4.63x10^{-1})U - 1.5,$	4.5 < U < 15 m/s
Ш	W(u) = (20.97)(U/15)1.5,	15 m/s < U .

The vertical arrival structure observed on an array in the sound channel as a function of vertical angle and frequency.

Noise level vs. vertical angle (0 deg. is up, low sea state) taken from above at specific frequencies. This figure compares the broad maximum along the horizontal at 49.5, 61.88, and 149.88 Hz with the peaked distributions at 240 and 339 Hz.

Relative noise levels versus angle (+90 is up) for 50 and 400 Hz. for the geometry and noise source distribution shown above.

Horizontal Noise Directionality

The Northeast Pacific Ocean (solid curve) compared to calculations basedon range dependent bathymetry, range dependent sound velocity profiles and measured density of ships. [Wagstaff (2005)]

The Dynamic Nature of Shipping Noise

Beam Noise Intensity Levels versus time and steering angle for a frequency of 320Hz, 0.18Hz band, 8 sec. interval for 110 λ array.

The plane wave noise response versus bearing and elevation angle for the uniform distribution of sources. The azimuthal dependence of the vertical directivity is obtained on a sector-by-sector basis. The down slope conversion of the noise from the sources over the slopes, to the north, fills in the notch at the horizontal. The directivity of the noise arriving from the open ocean, to the south, ispeaked at

The plane wave noise response versus bearing and elevation angle for the measured distribution of wind noise sources. The peak response is at a bearing of 270°.

The Philippine Sea

Philippine Sea Shipping Noise (22°N, 135°E)

30° and 10° Critical Angle Bottoms

Archival Shipping Density Source Levels at 50 Hz

HitsV, Source Levels at 50 Hz 36°N 80 75 -70 26°N 65 60 -55 50 16⁰N 45 40 35 6°N 120°E 130°E 140°E 150°E

Quick Sat 10m Wind Speed Derived Source Levels

Shipping - Uniform Source Distributions

360.00

360.00

Shipping Source Distribution

The Extremes in the Events of the Day in the Life of a Near Bottom Hydrophone

SPL = SL - TL = SL - 20 LOG(R)= SL - 74 dB. THE LEVEL AT 26 Hz IS SL = 170 dB re μPa^2 @ 1m.

NOTE:
$$I / \Delta f \left[W / m^2 - Hz \right]$$

 $I / \Delta f \propto P^2 / \Delta f \left[\mu Pa^2 / Hz \right]$
 $\propto \left(P^2 / \Delta f \right) \cdot \left[\mu Pa / \sqrt{Hz} \right]^2$

 12000 TON JAPENESE FREIGHTER PASSING 4,850 METERS OVER THE HYDROPHONE. ALSO SHOWN IS THE AMBIENT NOISE FOR A 5 KNOT WIND SPEED.

SW-U-1263-5/25/94

AS OF 5/25/94

Hellespont Alhambra (now Tl Asia), a ULCC Tl class supertanker, the largest ships in the world

Configuration of ABB LNGC Electrical Propulsion.

Dry Cargo

- * Small Handy size, carriers of 20,000 long tons deadweight (DWT)-28,000 DWT
- * Handy size, carriers of 28,000-40,000 DWT
 o Seawaymax, the largest size that can traverse the St Lawrence Seaway
- * Handymax, carriers of 40,000-50,000 DWT
- * Panamax, the largest size that can traverse the Panama Canal (generally: vessels with a width smaller than 32.2 m)
- * Capesize, vessels larger than Panamax and Post-Panamax, and must traverse the Cape of Good Hope and Cape Horn to travel between oceans

"Building Freight Capacity Through Better Operations: Defining the National Agenda"

Oil tanker size categories

AFRA Scale ^{[4}	41]	Flexi	le market scale ^[4]	
Class	Size in DWT	Class	Size in DWT	
General Purpose tanker	10,000–24,999	Product tanker	10,000-60,000	
Medium Range tanker	25,000–44,999	Panamax	60,000-80,000	
LR1 (Large Range 1)	45,000–79,999	Aframax	80,000-120,000	
LR2 (Large Range 2)	80,000–159,999	Suezmax	120,000-200,000	
VLCC (Very Large Crude Carrier)	160,000–319,999	VLCC	200,000-320,000	
ULCC (Ultra Large Crude Carrier)	320,000-549,999	Ultra Large Crude Carrier	320,000-550,000	

Wet Cargo

- Aframax, oil tankers between 75,000 and 115,000 DWT. This is the largest size defined by the average freight rate assessment (AFRA) scheme.
- Suezmax, the largest size that can traverse the Suez Canal
- VLCC (Very Large Crude Carrier), supertankers between 150,000 and 320,000 DWT.
 Malaccamax, the largest size that can traverse the Strait of Malacca
- ULCC (Ultra Large Crude Carrier), enormous supertankers between 320,000 and 550,000 DWT

References

Amorocho, J. and DeVies, J.J. (1980), "A New Evaluation of the Wind Stress over Water Surfaces", J. Geophys. Res. 85(C1), 433-442.

Donelan, M. A. (1982), "The dependence of Aerodynamic Drag Coefficient on Wave Parameters", nProc. 1st Conf. of Meteorology and Air Sea Interaction of the Coastal Zone, Am. Meteor. Soc., 381-387.

Hinze, J. O., 1959: *Turbulence*, McGraw-Hill Book Co., NY

Kerman,8. (1984), Underwater Sound Generation from Breaking Waves", J. Acoust. Soc. Am. 75(1), 149-164.

Kitaigarodskii, S. A. (1972), *The Physics of Air-Sea Interaction*, U.S. Department of Commerce, NTIS., Springfield, VA 22151.

Monahan, E. C. and Lu, M. (1990), "Acoustically Relevant Bubble Assemblages and their Dependence on Meteorological Parameters", IEEE, J. Oceanic Eng. 15(4).

O'Murcheartaigh, I. G. and Monahan, E. C. (1986) Oceanic Whitecaps, D. Reidel Publishing Co., Boston, MA.

Plate, E.J.(1971), Aerodynamic Characteristics of the Atmospheric Boundary Layers,

U.S. Atomic energy Commission, Available NTIS-TID-25465, National Technical Information Service, U.S. Dept. of Commerce, Springfield, Va. 22151.

Slade, D.H.,(1968), <u>Meteorology and Atomic Energy.</u> U.S. Atomic energy Commission, Available NTIS-TID-24190, National Technical Information Service, U.S. Dept. of Commerce, Springfield, Va. 22151. Su, M. Y., A. W. Green, and M. T. Bergin, 1984: 'Experimental Studies of Surface Wave Breaking and Air Entrainment,' <u>Gas Transference at Water Surfaces</u>, W. Brutsaert and G. Jirka (eds.), Reidel Press, pp 211-219

Thorpe, S. A., 1986: 'Measurements with an Automatically Recording Inverted Echo Sounder: Aries and Bubble Clouds,' <u>Journal of Physical Oceanography</u> 16, 1462-1478

Thorpe, S. A., 1986: 'Bubble Clouds: A Review of Their Detection by Sonar,. of Related Models, and of How Kv May be Determined.' <u>Oceanic Whitecaps and Their Role in Air-Sea Exchange Processes</u>, Reidel in assoc. with Galway Univ. Press, 57-68

Thorpe, S. A., 1982: 'On the Clouds of Bubbles Formed by Breaking Wind-Waves-in Deep Water, and Their Role in Air-Sea Gas Transfer.' <u>Philosophical Transactions of the Royal Society of London</u>, A304, 155-210

Urick, R.J. (1984), *Ambient Noise in the Sea*, Undersea Warfare Technology Office, NAVSEA, D.O.N., Washington, D.C.20362, (Also available from Peninsula Publishing, Los Altos, CA, 1986.)

Wenz, G. M., 1962: 'Acoustic Ambient Noise in the Ocean: Spectra and Sources,' <u>Journal of the Acoustical</u> <u>Society of America</u> 34, 1936-1956

Wilson, J. H., 1983: 'Wind-Generated Noise Modeling,' Journal of the Acoustical Society of America 73(1), 211-216

References

- Carey, W. M. and R. A. Wagstaff, "Low-frequency noise fields," J. Acoust. Soc. Amer., 80, (5) pp. 1522–1526, 1986.
- Dyer, I., (1970), "Statistics of sound propagation in the ocean," J. Acoust. Soc. Am. 48, 337-345.
- Farwell, R., (1985) "Session A: Underwater Acoustics< Air-Sea Interaction and Noise", J. Acoust. Soc. Am. 78(S1).
- Garabed, E. P. and R. A. Finkelman, "Measured vertical noise directionality at five sites in the Western North Atlantic," *IEEE J. Ocean. Eng.*, vol. 30, no. 2, pp. 282–285, Apr. 2005.
- Hersey, J. B., *International Workshop on Low Frequency Propagation and Noise, Vol. I, Vol. 2.* Arlington, VA: The Maury Center of Ocean Sciences, ONR, 1974.
- Knudsen, V. O. et al, (1948), "Underwater Ambient Noise", Jour. Marine Res., VII (3), 1948, 410-429.
- Leighton, T.,(1997) Natural Physical Processes Assoc. with Sea Surface Sound", ISVR, Univ. South Hampton, 1-10.
- Marshall, S. W., "Depth dependence of ambient noise," IEEE J. Ocean. Eng., vol. 30, no. 2, pp. 275-281, Apr. 2005.
- Mellen, R. H., "The Thermal-Noise Limit in the Detection of Underwater Signals", J. Acoust. Soc. Am., 24(5), 478-480, 1952.
- Nichols, R. H., "Some notable noises: Monsters and machines," in Special Issue Archival Papers, *IEEE J. Ocean. Eng.*, vol. 30, no. 2, pp. 248–256, Apr. 2005.
- Perrone, A. "Summary of a One Year Ambient Noise Measurement Program Off Bermuda," Naval Underwater Systems Center, New London Laboratory, NUSC T.R. 4979, Apr. 1976. (Available DTIC).
- Ross, D. "Ship sources of ambient noise," IEEE J. Ocean. Eng., vol. 30, no. 2, pp. 257-261, Apr. 2005.
- Urick, R. J., (1984), Ambient Noise in the Sea, Undersea Warfare Technology Office,
 - NAVSEA, D. O. N.U.S, Washington, D.C., 1984. Also available from Peninsula Publishing, Los Altos, CA, 1986.
- Urick, R.J. and A.W. Pryce, (1954), "A summary of Underwater Acoustic Data, Part V, Background Noise", The Office of Naval Research
- Wagstaff, R. A. (1978), "Interactive Techniques for ambient noise horizontal directionality---", J. Acoust. Soc. Am., 63, 863-869.
- Walkinsaw, H. M. "Measurement of ambient noise spectra in the south Norwegian sea," *IEEE J. Ocean. Eng.*, vol. 30, no. 2, pp. 262–266, Apr. 2005.
- Wenz, G. M. (1962)," Acoustic ambient noise in the ocean: spectra and sources" J.Acoust. Soc. America, 34(12), 1936-1956.
- Whittenborn, A. F., Tracor Corporation,, Alexandria, VA, Rpt. T76RV5060, DTIC (AD 00692), 1976. [see Shooter, J. A., T. E. DeMary, and A. F. Whittenborn, "Depth dependence of noise resulting from ship traffic and wind," *IEEE J. Ocean. Eng.*, vol.15, no.

4, pp. 292–298, Oct. 1990.]

Ambient Noise Reviews and Proceedings.

- Hersey, J. B., *International Workshop on Low Frequency Propagation and Noise, Vol. I, Vol. 2*. Arlington, VA: The Maury Center of Ocean Sciences, ONR, 1974.
- Urick, R. J., (1984), <u>Ambient Noise in the Sea</u>, Undersea Warfare Technology Office, NAVSEA, USDON Washington, D.C., 1984. Available from Peninsula Publishing,Los Altos, CA, 1986.
- Farwell, R. "Special Session Air-sea Interaction and Noise," 1985, 110 Mtg. of the Acoustical Society of America, J. Acoust. Soc. Am. 78(S1).
- Kerman, B.R., <u>Sea Surface Sound: Natural Mechanisms of Surface Generated Noise in the Ocean 15-19 June 1987</u>, Kluwer Academic Publishers, Dordrercht, Netherlands, 1988.

Medwin, H. "Sea Surface Sound," 1989, 117 Mtg. of the Acoustical Society of America, J. Acoust. Soc. Am. 75(S1). Kerman, B.R., <u>Sea Surface Sound: Natural Mechanisms of Underwater Sound, Sea Surface Sound (2) 3-6 July 1990</u>, Kluwer Academic Publishers, Dordrercht, Netherlands, 1993.

Carey, W.M., and E.C. Monahan, "Special Issue on Sea Surface Generated Noise: 20-2000 Hz.", J. Oceanic Eng., 15(4), 1990.

Buckingham, M.J. and J.R. Potter, Sea Surface Sound" 94, World Scientific, Singapore, 1995.

Leighton, T.G., <u>Natural Physical Processes associated with Sea Surface Sound</u>, Univ. of Southampton, Highfield, Southampton S017 1BJ, UK, 1997.

Carey, W.M., "Special Issue on Archival Papers", J. Oceanic Eng., 15(4), 1990.

Wind noise source intensity level curves versus frequency and wind speed, due to [Kewley et al., 1990]. The wind speeds in m/s are equivalent to 5, 10, 20, 30 and 40 knots, respectively. The source levels are in units of

 $dB re: 1\mu Pa^2 / Hz@1m$

per square meter of surface area. The source depth is assumed to be one quarter of a wave length.

ANDES shipping source intensity level curves versus frequency and ship type, due to [Renner, 1986]. The source levels are in units of

 $dB re: 1\mu Pa^2 / Hz@1m$

The source depth is assumed to be 6 m.

$\Delta NL(f, f_o U, U_o) = 20n(f)LOG(U/U_o) + 10m(f) \cdot LOG(f/f_o),$

Wind speed dependency factor *n*(*f*) vs frequency for wind speeds >13 knots. Shown are the results of Crouch and Burt (1972), Piggott (1964), and Marrett and Chapman (1990) and an average of all data.

Critical Angle Bottom Loss

Rain Drop Entrainment

Source level per unit area representation

Application of Reciprocity in the vertical plane